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Abstract. Massively parallel compute rs afford to genetic algorithms
t he use of very large populat ions, which allow t he algor it hms to at tack
more difficult optimization prob lems than were feasible in t he past .
Optimization perform an ce on difficult search spaces- those t hat are
both vast and have large num bers of local optima-can be particu­
larly crippled by a common problem of genet ic algor it hms: prematur e
convergence of the population to a subopt imu m. In nature, however ,
com petit ion between like organisms prevents total convergence , and
t his competition effect can also be int roduced to the standard genetic
algorit hm by an extension called sharing. Shar ing forces org an isms
within a nic he to compete. In past work, the size of the niche has
been fixed , and calc ulated by hand for simple test problems.

This paper int roduces an improvement to fixed- niche sharing called
scheduled sharing, which (1) allows for the app lication of sharing to
complex problems where there is no definable best niche size, and
(2) does not violate t he "black box" principle in t he calculation of
niche size, instead borrowin g from simulated annealing an exponen­
ti ally decreasing schedule. We show that scheduled sharing inhibits
convergence and imp roves pe rformance for optimization pr oblem s that
are difficult relative to t he size of the populati on used .
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1. Introduction

The lar ge populations afforded to genet ic algorit hms by massively par allel
compute rs-curre nt ly many thousands of organi sms - can be applied to the

- op ti mization of more difficult spaces than have b een pr eviously attempted .
When searching difficult spaces-spaces that are both vast and have many
local op ti ma-genetic algorit hms are particularly susceptible to the problem
of premature convergence to local optima. Throu gh vari ous mechanisms ,
many opt imiza tio n algorit hms can become "t rapped" in local opti ma of a
space before they have found the global optimum. In genetic algorit hms , this
occurs when one typ e of organism mul tiplies too qui ckly before the global
opti mum has been found , des troying var ia tion in the population, which is
needed for a br oader sea rch of th e space.

This paper introduces an exte nsion to the standard genetic algorithm
called scheduled sharing, and studies it s effects on lar ge-p opulation genet ic
opt imiza t ion of ru gged two-dimension al landscap es. Scheduled sharing at­
t acks the problem of premature converge nce to improve offline performan ce
by requiring organi sms within a nic he to compete with their neighb ors. The
niche size is initially large, encour aging the organisms to spread evenly across
the space; it t hen decays exponent ia lly, allowing gra dual clust ering of org an­
isms in areas of grea ter interest.

Convergence in genetic algorithms and in nature

Geneti c algorit hms exploit past experience by allowing the pr opagation of
organisms that have had past success . In addit ion, crosso ver allows the evo­
lution of successful schemata-segm ents of genet ic material smaller than the
ent ire genot ype . Natural select ion pr ovid es the mechanism for the propa­
gation of successful organisms , but also tends to push a population toward
domination by many copies of a single, relatively fit genotype . In the stand­
ard genetic algorithm (Dejong's R4 algorit hm [6]), t here is no force spe cifi­
cally working agains t this domination , and the fate of most populati ons, afte r
several generations , is domination by many copies of nearl y identi cal organ­
isms. On ce t his total convergence to a sing le solut ion has occurred , crossover
can no long er generate varia tion in the population ; remaining is mutation ,
a slower , blind source of varia t ion . Aft er to tal convergence , the search for
bet ter solutions is effectively stopp ed . In the case that the global optimum
is found before convergence, the algorit hm is considered to have performed
as was int ended ; however , if the global optimum, or a point close enough
to it , was not found, then the convergence is called premature. Some­
times early convergence saves time, and is sufficient to find a good solutio n ;
but sometimes, especially in realist ic and difficult spaces , early convergence
dismi sses potenti ally rewarding sea rch areas before they have been probed
adequately.

There exist extensions to t he standard genet ic algorit hm that spec ifi­
cally address the problem of premature convergence. For instan ce, see Shae­
fer 's ARGOT [12]; Booker 's work on improving the crossover operator [4];
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Mauldin 's uniqueness requirement [10]; and Baker 's "percent involvement"
method to pr ed ict rapid convergence and respo nd to it [2] .

T his pap er is mainly concerne d wit h anot her such extension to the stand­
ard algorit hm called sharing, as describ ed in [7, 5], which makes an analogy
to natural compet it ion between like organisms. In natur e, the populat ion of
a single typ e of organi sm does not cont inue to increase wit hout limit . As
one type of organism mult iplies to a large subpopulat ion, this subpopulat ion
consumes mor e of certain resources pr esent in the environment , and these
resources become scarce. Similar individuals must then compete wit h each
other for the same scarce resources, causing them all to suffer from want.
Growth of this subpopulation is then slowed , and finally settles around some
"carrying capacity," at which the number of organisms of a particular typ e
is in equilibrium wit h the availability of t he resourc es that they consum e.

Simulat ion of the sharing effect can be added to the standard genet ic
algorithm by supposing abst ract resources that all organisms exploiti ng a
par t icular niche must comp ete for , or share. If there are too many organ isms
wit hin a niche, the shortage of these resources decreases the fitness of all the
organisms wit hin the niche. It is assum ed that two organisms that are adja­
cent in the search space will consume more of the same resources than two
organisms that are far apart in the search space. (Note that the resour ces
are never explicit ly simulated but are simply an analogy to populat ion bi­
ology.) The effect is introduced by multiplying an organism 's phenotypic
fitness by a sharing factor, a numb er between zero and one that is inversely
proport ional to the number of neighb ors the organism has near it wit hin a
distance called the niche size. Distan ce is measur ed by some metric that is
defined on the phenotyp e or genotype space. For instance, in this work, our
algorithms searched for maxima on ru gged two-dimensional landscapes: the
phenotyp es were (x,y) pairs. We therefore used a simple two-dimensional
cartesian distance function . Alte rn at ively, dist ance could be measured by
hamming distance between genotypes.

Fixed-niche sharing as described in [7, 5] requir es the tuning of the size of
the niche to a particular search fun ct ion. For instance, when searching a one­
dimension al space wit h several peaks (multi-modal functi ons with peaks of
equal width were searched in both of the above pap ers), t he niche size is set to
the width of the landscape divided by the number of peaks. This method of
tuning the niche (1) violates the principle of isolati ng the lan dscap e function
in a "black box" , and (2) is not applicab le to more comp lex sea rch spaces,
where there is no definable best size. T his pape r will introduce a modification
to sharing called scheduled sharing intended to remove the violation of the
"black box" principle and make sharing applicable to more complex problems.

Fixed-niche sharing

One method of implement ing fixed-niche sharing is described in [7, 5J. We
largely followed their method in our implementat ion of sharing, which is
described below.
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In any genet ic optimization problem , we evaluate at selected point s in the
search space some function embodying t he parame ters and const ra ints to be
optimized . For instance, if our goal was to find the highest point on a rugged
two-dimens ional landscape, the ph enotype of a single organism i would be
Pi, an (x, y) pai r; and the function f(Pi) = Ii would yield the organism's
phenotypic fitness , or the height of t he landscape at that point.

In order to implement shar ing , we will multiply i. . the phenotypic fitn ess
of organism i , by nslu , the normalized sharing f actor calculated for the organ­
ism, to get gi , the organism's overa ll fitn ess. The norm alized sharing factor ,
nslu , is a number between zero and one and is generated in the following
way.

We define a difference function for any two organisms i and j as

[
d ] '"diff(dij ) = _ '_J_ if d;j < O"shar e

O"share

= 1 otherwise

where O"sh are is the niche size and dij = d( Xi,Xj), th e distan ce between or­
ganisms i and j measured by some metric defined on the phenotyp e or geno­
type space. In our case, the phenotype was an (x,y) pair , so we used a
two-dimensional cartesian dist ance function. (ex was set to 1 in the results
describ ed below.) The function diff(dij ) is low when i and j are like each
other , that is, when t hey share the same niche.

We next define a sharing factor sh; for organism i relative to th e rest of
the population:

sh; is therefore low when organism i is competing intensely with its neighbors.
The normalized sharing f actor, nslu , is found simply by normalizing and

constraining the range of stu.

sh;
nshi=r · + (l- r )

maxi shi

where r is a number (0 :::; r :::; 1) that const ra ins the range of t he norm alized
sharing factor , nslu. This limits the impact that the sharing factor can have
on t he phenotypic fitn ess. (In the results presented below, r was set to .75.)

The normalized shar ing factor for organism i , rislu , will be a number
(1 - r ) :::; n sh ; :::; 1 that will be as high as 1 when organi sm i is not required
to share at all, and will be as low as (1 - r) when the organism finds itself
sharing int ensely with it s many nearby neighbors in th e phenotype space.

Finally, we multiply f i by n sh; to find gi , the overall fitn ess function for
organism i:

gi = nshi · f i
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Past work on sharing

447

In past work , it has been demonstrated that organisms can be more evenly
distributed across one-dimensional landscapes of five peaks of equal width
when they are forced to sha re wit h a fixed niche size tuned to the particular
width of the peaks [7, 5J. It is admitted in [5], however , that the niche size,
(J sh are , "must be set carefully." Sharing at a fixed niche size approp riate to a
five-peak landscap e would only slow the optimization of a unimodal function
by distributing the trials more broadly than is necessary. A function with
ten t imes as many peaks would be better helped by sha ring wit h one-tent h
the niche size. Moreover , a single best niche size cannot be meaning fully
defined for more complex search spaces. A complex space may contain peaks
of sizes varying by many orders of magnitude, over which it may.be desirab le
t o evenly distribu te organisms using sha ring .

Most previous studies of sharing in geneti c algorithms have been limited
in that they (1) required hand tun ing of the size of the niche within which
organi sms were to sha re with one another , (2) test ed their algorithms by
optimizat ion of simple one- or two-dimensional functions, and (3) simulated
small populations. These three limitations are interrelated : alt hough such
hand tuning is feasible on simple funct ions, it is not possible on complex
functions or for pr acti cal applications of optimization . In addit ion , more
compl ex test functions with many local optima tend to require lar ger pop­
ulations for their adequate solut ion; most of these studies were conducted
without parallel compute rs and so used smaller populat ions.

2. Current modifications to sharing

The research discussed in this pap er seeks to modify fixed-ni che sharing to
be compat ible with more difficult and mor e realisti c test functions. We call
the pr imary modification scheduled sharing, in which the niche size is ini ti ally
large and then slowly reduced according to a schedule.

In addit ion , we describe sampled sharing, a method to remove the O(n 2
)

communications between processors required by standard sharing. The pos­
sibility of using sampling to speed up sha ring was suggested, though not
implement ed , in [7] .

These improvement s to st andard sharing are tested using populations of
up to 65,536 organisms. An adequa te t rial for such large populations requi res
a more difficult search space than has been used in past work . We describe
a method to generate rugged two-dimensional landscapes, with features on
many scales t hat are exploitable by genet ic search . These landscap es have
many more local opt ima of different sizes, from global structures to struct ures
1.7 x 10- 7 the area of the landscape. They replace the simple, single-feature­
size landscap es used in past shar ing work.
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Scheduled sharing: genera lization of fix ed-niche sharing

This work int roduces a technique called scheduled sharing, which begins a run
of n generations with a large niche size and then decreases the niche size as a
function of the percentage of the total run that has been completed . Star t ing
with a large niche size causes all organisms to repel each ot her , spreading
the organ isms evenly across the space, and assures tha t the ini ti al stage of
the search is a broad surveying of the lan dscape. As the niche size shrinks,
the organisms are allowed to clust er at a controlled rate in areas of the space
that are of greater interest . T his clustering continues unt il, in the last stages
of the run, organ isms cluster densely in the areas of greatest interest . This
assures th at the smallest local optima will be searched fully before the run is
ended . T he cont rolled relaxat ion to convergence is remin iscent of the process
of simulated' annea ling.

We wanted our sched ule to cause the algorit hm to obey the pr inciples
of attention focusing [11], namely that it should ini tially encourage the algo­
rithm to choose the generally optimal large-scale areas of the space, and then
allow the focusing of at tention first up on mid-sized and then upon smaller
details wit hin the selected areas . Mauldin has also tried a similar method
in [10] by requiring a linearly decreasing minimum hamming distan ce be­
tween the genotyp es of his populat ion over time. We followed the exa mple
of Kirkpatr ick's work on simulated annealing [9], choosing to equate the size
of the niche to an exponent ially decaying function of the percentage of the
run complete d :

- 13- (cu rrent ge nerat ion)
IJ h - (widt h of landscape) . 2 (max ge ne ration)5 are -

where (3 is a parameter cont rolling how quickly the exponent ial func t ion
drops off. ((3 was set to 14 in the results described below.) T he choice of
such a schedule is discussed fully in our resul ts and conclusion .

Sampled sharing: fast sharing for large populations

Because such large populations were used in this work (up to 65,536 or­
ganisms), and because communicat ion between processors is often the most
expensive part of a par allel comput at ion , we did not sum over all j in the
calculation of slu , but rather chose a rando m subset of the j s each genera­
tion , and summed over those. We call this technique sampled sharing. We
sampled a fixed number across all populat ion sizes (rather tha n the alterna­
tive of sampling a percentage of each population size) , since , in the limit of a
large populat ion , the variance of t he err or caused by sampling is dependent
up on S , the numb er of points sampled , rather tha n on S / P , the percentage
of the total population that is sampled .

Formally, if m k(x ) is the kth moment of the distribution in the variable x:



Im proved Evo lut ionary Optim ization of Difficul t Landscap es 449

then the variance of the err or in the calculation of sh. , the sharing fact or for
organism i as defined above on a population size P using a sample size 5 is

var:::; [~-:%J.[-4ml (x)m3(x) + 3m~(x) + m4(x)

- 4ml (y)m3(Y) + 3m~(y) + m4(Y)]

In t he limi t of a lar ge population , P ----t 00 , t his becomes

var:::; [~J .[-4ml (x)m3(x) + 3mHx) + m4(x)

- 4ml(y)m3(Y) + 3m~ (y) + m4(Y)]

In ot her words, for lar ge populations the variance du e to sampling is depen­
dent only on the sample size 5 and on the moments (which depend on the
distributi on) , not on the population size P or on SIP [3].

Although it is st ra ight forwa rd to calculate the variance, it is not obvious
how lar ge the vari ance would have to be to have a deleterious effect on the
performan ce of the algorithm. Therefore, we chose 5 empirically, find ing
that sampling 164 points had no deleterious effect on the algorit hm. The
derivati on above assures us that using the same number of points should
yield the same varian ce over different populati ons.

3. Implementation

Scheduled sharing as described in this pap er was implemented on the Connec­
tion Machine superco mputer , a massively par allel single-instruction multiple­
data (SIMD) machine. We mapped each organi sm to one virt ual pr ocessor.
On the Connection Machine, a vari able number of virt ual pro cessors can be
mapped to each physical pr ocessor actually present in the machine, which
allows easy change of population size. We used machines of up to 32,768
physical processors to simula te up to 65,536 organisms. For communica t ion
between pr ocessors, the machine can be configured as an n-cube of arbitrary
dim ension. We configured the machine as a two-dimensional grid and allowed
organisms to mate locally on the grid: each par ti cipating organism 's partner
was a random , nearby neighbor (within 5 random steps in the x or Y dir ec­
tions) . This was arranged so that each organism had exact ly one par tner.
Each pair of organisms had a 50% chance of mating and a 50% chance of
comp et ing by simple replacement of the less fit organism by the more fit. A
fixed 2% mutation rate was used.

The optimization problem that our algorit hm was made to solve was
the sea rch for maxima on vari ous ru gged two-dimensional landscap es, as
described below. The organisms' genetic material t herefore consisted of an x
and a Y chromoso me. During crossover , t he x and y chromosomes were lined
up par allel to one another and t he cross was mad e at a randoml y selecte d
point, the same po int for both chromoso mes. Each chromosome had 15 bit s
of accuracy, yielding a tot al of 230 = 1.07 billion point s in a given landscap e.
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F igure 1: Subfun ction 50 plus subfunction 51 yields landscape L .

Searching a rugged two-dimensional landscape

In past work concerned with the improvement of genet ic algorithms there is
significant precedent for using the optimization of one- and two-dimensional
functi ons to study the performance of different algorit hms , for example,
[6, 7, 1J. Such funct ions have the advantage that they are easy to visualize,
making it eas ier to speculat e about why a particular change to an algorit hm
has impr oved or degrad ed perfor man ce.

Past work on sharing itself has used landscapes with five or fewer local
optima, having equal-sized basins of at trac t ion [7, 5]. This is understandable
in that the intent of the research was to introduce sharing and show that it
had a posit ive effect. Our intent was to investigate spaces where the basins of
attract ion of the local optima varied dramatically in size, and in which there
were many more local op tima. When searching such a space it is no longer
possible simply to set the niche size to the size of the bas in of attraction,
since there is no single size. Problems containing significant numbers of local
optima and discont inuit ies also more closely reflect pr act ical applica tio ns of
op t imization .

Our two-dimensional test landscapes L were composed of the superposi­
tion of several two-dimensional trigonometric functions S, of different ampli­
tudes and frequencies . For instan ce, figure 1 shows two subfunct ions 50 and
5 1, and the landscape L produced by their summat ion . In the figur e, white
areas represent relati vely high po int s on the landscape, and black areas rela­
ti vely low points. T he actual landscapes we used , as described below, had up
to five superimpos ed subfunctions with grid sizes many ord ers of magni tude
smaller than those in the figure.

The subfunct ions S, had two basic compo nents : a random-grid function ,
and the funct ion cos(x ) + cos(y).

T he rand om-grid fun ction , Rn(x ,y), return s a randomly initi alized , fixed
number , 0 :s aij :s 1, to all the (x , y) points wit hin a given square (designated
by the pair (i , j)) of an n x n grid superimposed on the domain .

We used Rn in combinat ion with the cos(x ) + cos(y) function to con­
st ruct subfunct ions of different frequencies that were then summed to pro­
duce the final landscape. Within each subsquare of an n x n grid , the cosine
fun ct ions were given a different rand om offset and amplitude in both the x
and y direct ions wit h four copies of the Rn function , R~ . .. R~ (the random
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offset and amplitude are included to allow discontinuity in the space). The
subfuncti ons S, were defined as

S, = R;; cos (ViX + R;;) +R~; cos (ViY +R~;)

The final landscapes used to tes t the genet ic algorit hms were then

= 2:Wi(R;; cos (ViX + R;J + R~; cos (ViY + R~J) + La

where Wi are the weights dict ating the contributions of the subfunct ions at
t he different frequencies det ermined by the numbers Vi. La is a cons tant set
to L i 2Wi , so that no po int returns a negative fitn ess.

In the experiments descr ibed below we used an i of 5, building landscapes
out of five subfunctions , each with st ruct ure of a different frequency. T hese
ranged from global st ruct ures to tiny st ruc tures 1.7 x 10-7 the total area of
the landscape. For a simple visu alization, refer back to figure 1, depicting:
subfunct ion 50, which has global st ruct ure; subfunction 51, which has struc­
ture on the scale of 1/16 the area of the landscape; and landscape L, the
summation of the two subfunct ions.

For a given set of weights Wi , an extremely lar ge number of random land­
scapes can be generated . (We can for testing purposes , of course, generate
the same one many t imes by st arting with the same random seed.) In the
set of all landscapes that could be randomly generated with a given set of
weights Wi, not all landscapes will have the same global optimum; but the
highest global optimum of any landscape in the set is equal to 2Lo. Alt hough
the particular "easy" and "difficult" landscapes used in the expe riments be­
low may not have the same global optimum, and do not have the same sets
of weights Wi, their resp ective set s of weight s do sum to the same La.

T he landscapes defined above sat isfy our desire to control precisely the
strengths and scales of the "hints" as to the location of probab le optima that
are available to the genetic algorithm. In addit ion , we can easi ly generate a
large number of different landscapes that are like each other in the amount
of exploitable information they provide. The landscapes are two-dimensional
in this work , following pr ecedent in geneti c algor ithms research for the use
of one- and two-dimensional algorithms , and because two dimensions ar e so
easily visu alized ; however , they could be expanded to higher dimensionality.
One poss ible drawback of the landscap es is the expense of the cosine cal­
culation, which may make the landscapes slower to generate than other test
functions that could be defined . The cosine, however , is also easy to visualize
and work with. One of the most important features of the lan dscapes is that
any po int can be calculated "on the fly" by any pro cessor ; that is, the points
are not complet ely calculated once and stored, but rather each point is cal­
culated locally as it is needed , saving both time and memory costs , which
would be pro hibitive for the vast lan dscapes of 1.07 billion po ints that we
used .
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Convergence (on a Difficult Landscape)
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Figure 2: Convergence on a difficul t landscape.

4. R esults

Schedul ed sharing inhibits convergence

The convergence of a populat ion can be calculated by div iding the search
space into many disjoint subspaces or "buckets," calculat ing Xi , t he percent­
age of the total population wit hin each bucket , and summing the squares of
these percentages. This measure will be higher for a population that is more
concent rated in one or a few buckets, an d lower for populati ons more evenly
distr ibu ted across the buckets. Therefore L i x: is a useful measurement of
the convergence of a populati on . (An alternat ive measure sometimes used
is L i Xi In Xi') Convergence measurements given later in this document were
performed with 256 bu ckets and give a rough measur e of the self-similarity
of the population .

As figur e 2 shows, scheduled shar ing effect ively inhibit s convergence . Al­
though a non-shar ing populat ion will usually converge by generat ion n (where
n is dependent on the pr oblem , the implementat ion , and the population size),
an algorit hm using scheduled sharing can delay convergence for as long as
is desired , and can therefore cont inue to search efficient ly. Figur e 2 shows
the convergence afte r 350 generat ions for populati ons from 256 to 65,536
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organisms (note that the population sca le is logarithmic) , wit h sharing and
with ou t sharing . Whereas popul ations of all sizes are near total convergence
after 350 generat ions wit hou t sharing , all of the populati ons wit h sha ring
have much lower convergence.

Easy la ndscapes and di fficult landscapes

In the following discussion we refer to two classes of lan dscap es, which can
be cons tructed by set t ing the weights Wi of the subfunct ions. Easy land­
sca pes are those having a small number of local optima wit h wide basins of
at traction . T hey can be cons tructe d by giving a large weight to the contribu­
t ion of low-frequency subfunctions and a lesser weight to the cont ribut ion of
higher-fr equ ency subfunctions. Diffi cult lan dscapes have a larger number of
local optima wit h small basins of attraction. These landscapes are generated
by weight ing the cont ributio ns of higher-frequency subfunct ions more than
the contribut ions of lower-frequ ency subfunct ions. Slowed convergence-and
th e bro ad er surveying of the landscap e that it implies-is most pro fitable on
such difficult landscapes.

Perform ance improves for difficult la ndscapes
and/or smaller populations

T he scheduled delay of convergence effected by scheduled sharing, in certain
cases, imp roves the overall performan ce of the search . (Overall performan ce
is measured here by taking the average, over r runs, of the best organism
foun d at any point during a ru n of n generat ions .) In par ti cular , controlled
convergence helped overa ll performan ce most when eit her the landscap e was
difficul t (as describ ed above) , or the populati on size was small, or both.

To give some measur e of the abso lute optimization performan ce of the two
genet ic algorit hms (scheduled sharing and non-shar ing) on the landscapes,
we include in figur es 3 and 4 a compar ison to a random search algorit hm . At
a given population , the random search algor ithm performed the same number
of fitn ess fun ction evaluations as the two genetic algorit hms to which it is
compared .

Figure 3 shows overall performan ce of the scheduled sharing and non­
sharing genet ic algorit hms, and of the random search algorit hm , on a rel­
at ively difficult landscap e, as defined above. T he y axis shows overall per­
formance, and the x ax is shows the population size (again on a logarithmic
sca le) . Note that scheduled sharing populations outperformed non-sharing
po pul ati ons for all population sizes, including the highest. We hyp othesize
that , for this more difficul t landscap e, t he ext ra effort taken to broadl y sur­
vey the entire landscap e at the outset of the search, and then converge to
int eresting areas in a cont rolled fashion , allowed the system to achieve better
overa ll performance.

The fact that the random search algorit hm outperforms the non-shar ing
genetic algorithm for th e two lowest populations gives an indi cation of just
how difficult the landscap e is: the non-shar ing algorithm, at the two lowest
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Figure 3: Performance on a difficult landscape.

populations, was unabl e to use the very few "hints" available in the struc­
ture of the landscape to beat a brute-force random sear ch; it converged too
quickly to lesser local opt ima. The schedul ed sharing algorithm, however ,
whose delayed convergence encouraged a broader search of the difficult land­
scape , found enough hints to consiste nt ly outperform random search at all
population sizes.

Note that , for the difficult landscap e in figure 3, sharing populations of a
given size do almost as well as non-shari ng populations of four t imes the size.
Sharing does require some ext ra computat ion-a generation with sharing in
this case too k about 1.5 to 2 t imes as long to compute as a non- sharing
generat ion (t hough this will be problem- and implement ation-dependent).
This ext ra computationa l cost , however , is more than compensated for by
the fact that only one-qu arter the population needs to be used to get nearly
the same performance .

We hyp othesize that the cont rol of convergence by scheduled sharing
allows more efficient use of the available population . This ability to use
a small populat ion more efficient ly is not such an advantage , however , if
the populat ion size is already large relati ve to the difficulty of the land­
scape . For instance , see figure 4, which shows overall perform an ce versus
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Figure 4: Performance on an easy landscape.

population size for an easier landscape. Note that, for all the lower popula­
t ions , the scheduled sharing algorithm performs better than the non-sharing
algorit hm. However, at the two highest populat ions on this relatively easy
landscape, the non-sharing algorit hm outperforms t he sharing algorit hm. We
hyp oth esize that th e scheduled sharing algorit hm becomes less efficient th an
the non-sharing algorit hm by blindly forcing th e popul ation to adhere to it s
schedule, instead of let ting it quickly optimize on the details of the landscap e,
which in this case would be sufficient. As a consequence, the scheduled shar­
ing algorithm does not have as much t ime to fine-tune and search preferred
areas int ensively, and is out performed in this case by th e non-sharing algo­
rithm. In addit ion, at th e largest popu lations, the random initialization of
the popul ation probably provides to the non-sharing algorithm a fairly broad
initial survey of the space (at least , sufficiently broad for th e easy landscap e) ,
redu cing the advantage gained by slowing convergence.

Both genet ic algorit hms beat the random search algorithm at all popu­
lation sizes on the easy landscap e because th e easy landscape gives many
exploitable hints to direct the genetic algorit hms toward promising search
areas . At the highest population, the random search algorit hm approaches
most nearly the performance of the scheduled sharing algorit hm for two
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reasons: (1) at the highest population , the scheduled sharing algorit hm is
hindered most by the improper schedule (sin ce, for large populations, a forced
broad survey is least needed) ; and (2) both of the genet ic algorithms are lev­
eling off near the global opt imum of the easy landscap e, so the random search
algorithm is ab le to catch up.

5. Conclusions and future work

In this pap er we hope to have given some directi on to the study of sharing.
We believe that the mechanism of a sharing schedule provides flexibl e cont rol
of the convergence of a genet ic algorit hm. It ap pears to be a good tool for
the job ; we need now to learn how better to use the tool.

In removing the need to tune the niche size to the problem at hand,
we have created a need to tune the sharing schedule. This replacement is,
however , an improvement: whereas it doesn 't make sense to select a single
fixed niche size for any but t he simples t of problems (i.e. , as those with
"hints" only on one scale, such as a sine wave), it will probabl y be possibl e
in future work to discover ways of tuning the schedule.

Our results have shown that scheduled sharing can help overall perfor­
man ce for difficult land scapes and/or po pulat ions that are small relative to
the difficulty of the landscap e. The resul ts sugges t that easier landscap es
and/or larger populations would also run well if we could somehow detect
when it is allowable to "tur~ff" t he fixed schedule-to let the convergence
of the algorithm speed up. O~iously, to make a sched uled sharing algorithm
that is efficient at searching landscap es of widely vary ing difficulty we need
a "difficulty det ector" to decide up on the schedule.

Without violating the principle of the "black box" search function, it may
be poss ible to introdu ce ot her information as feedb ack to define a pr oblem­
depend ent sharing schedule. Instead of fixing the niche size to a fun ction of
"pe rcentage of run completed," we could tie it dyn ami cally to some other
vari abl e. For inst an ce, the niche size could decrease as some fun cti on of the
curr ent population convergence. (Convergence has been used as feedb ack
in [12] .) Alt ernatively, the rate of impr ovement of the average performance
might pr ovide some information abo ut the landscap e: as improvement slows
down , it implies that the population has efficient ly sear ched the landscape
at the curre nt niche size, and the niche size should be decreased to allow
explorat ion of det ail. Other possibilities include t he mon itoring, and cont rol
through manipulati on of the sharing sched ule, of Baker 's "percent involve­
ment" pr edictor of rapid convergence [2] ; or of an ent ropy measure like that
of Wil son [13].

Any of the above feedb ack mechani sms could allow the niche size, inst ead
of changing blindly as a functi on of t ime, to change dynami cally in response to
the behavior of the algorithm on a par ti cular search space . These possibilities
represent t he most pr omising avenues for future work.
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