Complex Systems 5 (1991) 443-458

Improved Evolutionary Optimization
of Difficult Landscapes:
Control of Premature Convergence
through Scheduled Sharing

Michael E. Palmer*
Department of Computer Science, California Institute of Technology,
Pasadena, CA 91125, USA

Stephen J. Smith’
Thinking Machines Corporation, 245 First Street,
Cambridge, MA 02142, USA

Abstract. Massively parallel computers afford to genetic algorithms
the use of very large populations, which allow the algorithms to attack
more difficult optimization problems than were feasible in the past.
Optimization performance on difficult search spaces—those that are
both vast and have large numbers of local optima—can be particu-
larly crippled by a common problem of genetic algorithms: premature
convergence of the population to a suboptimum. In nature, however,
competition between like organisms prevents total convergence, and
this competition effect can also be introduced to the standard genetic
algorithm by an extension called sharing. Sharing forces organisms
within a niche to compete. In past work, the size of the niche has
been fixed, and calculated by hand for simple test problems.

This paper introduces an improvement to fixed-niche sharing called
scheduled sharing, which (1) allows for the application of sharing to
complex problems where there is no definable best niche size, and
(2) does not violate the “black box” principle in the calculation of
niche size, instead borrowing from simulated annealing an exponen-
tially decreasing schedule. We show that scheduled sharing inhibits
convergence and improves performance for optimization problems that
are difficult relative to the size of the population used.

*Electronic mail address: mep@vlsi.cs.caltech.edu
tElectronic mail address: smith@think.com

e o F o e oA o

444 Michael E. Palmer and Stephen J. Smith

1. Introduction

The large populations afforded to genetic algorithms by massively parallel
computers—currently many thousands of organisms—can be applied to the
optimization of more difficult spaces than have been previously attempted.
When searching difficult spaces—spaces that are both vast and have many
local optima—genetic algorithms are particularly susceptible to the problem
of premature convergence to local optima. Through various mechanisms,
many optimization algorithms can become “trapped” in local optima of a
space before they have found the global optimum. In genetic algorithms, this
occurs when one type of organism multiplies too quickly before the global
optimum has been found, destroying variation in the population, which is
needed for a broader search of the space.

This paper introduces an extension to the standard genetic algorithm
called scheduled sharing, and studies its effects on large-population genetic
optimization of rugged two-dimensional landscapes. Scheduled sharing at-
tacks the problem of premature convergence to improve offline performance
by requiring organisms within a niche to compete with their neighbors. The
niche size is initially large, encouraging the organisms to spread evenly across
the space; it then decays exponentially, allowing gradual clustering of organ-
isms in areas of greater interest.

Convergence in genetic algorithms and in nature

Genetic algorithms exploit past experience by allowing the propagation of
organisms that have had past success. In addition, crossover allows the evo-
lution of successful schemata—segments of genetic material smaller than the
entire genotype. Natural selection provides the mechanism for the propa-
gation of successful organisms, but also tends to push a population toward
domination by many copies of a single, relatively fit genotype. In the stand-
ard genetic algorithm (DeJong’s R4 algorithm [6]), there is no force specifi-
cally working against this domination, and the fate of most populations, after
several generations, is domination by many copies of nearly identical organ-
isms. Once this total convergence to a single solution has occurred, crossover
can no longer generate variation in the population; remaining is mutation,
a slower, blind source of variation. After total convergence, the search for
better solutions is effectively stopped. In the case that the global optimum
is found before convergence, the algorithm is considered to have performed
as was intended; however, if the global optimum, or a point close enough
to it, was not found, then the convergence is called premature. Some-
times early convergence saves time, and is sufficient to find a good solution;
but sometimes, especially in realistic and difficult spaces, early convergence
dismisses potentially rewarding search areas before they have been probed
adequately.

There exist extensions to the standard genetic algorithm that specifi-
cally address the problem of premature convergence. For instance, see Shae-
fer’s ARGOT [12]; Booker’s work on improving the crossover operator [4];

Improved Evolutionary Optimization of Difficult Landscapes 445

Mauldin’s uniqueness requirement [10]; and Baker’s “percent involvement”
method to predict rapid convergence and respond to it [2].

This paper is mainly concerned with another such extension to the stand-
ard algorithm called sharing, as described in [7, 5], which makes an analogy
to natural competition between like organisms. In nature, the population of
a single type of organism does not continue to increase without limit. As
one type of organism multiplies to a large subpopulation, this subpopulation
consumes more of certain resources present in the environment, and these
resources become scarce. Similar individuals must then compete with each
other for the same scarce resources, causing them all to suffer from want.
Growth of this subpopulation is then slowed, and finally settles around some
“carrying capacity,” at which the number of organisms of a particular type
is in equilibrium with the availability of the resources that they consume.

Simulation of the sharing effect can be added to the standard genetic
algorithm by supposing abstract resources that all organisms exploiting a
particular niche must compete for, or share. If there are too many organisms
within a niche, the shortage of these resources decreases the fitness of all the
organisms within the niche. It is assumed that two organisms that are adja-
cent in the search space will consume more of the same resources than two
organisms that are far apart in the search space. (Note that the resources
are never explicitly simulated but are simply an analogy to population bi-
ology.) The effect is introduced by multiplying an organism’s phenotypic
fitness by a sharing factor, a number between zero and one that is inversely
proportional to the number of neighbors the organism has near it within a
distance called the niche size. Distance is measured by some metric that is
defined on the phenotype or genotype space. For instance, in this work, our
algorithms searched for maxima on rugged two-dimensional landscapes: the
phenotypes were (z,y) pairs. We therefore used a simple two-dimensional
cartesian distance function. Alternatively, distance could be measured by
hamming distance between genotypes.

Fixed-niche sharing as described in [7, 5] requires the tuning of the size of
the niche to a particular search function. For instance, when searching a one-
dimensional space with several peaks (multi-modal functions with peaks of
equal width were searched in both of the above papers), the niche size is set to
the width of the landscape divided by the number of peaks. This method of
tuning the niche (1) violates the principle of isolating the landscape function
in a “black box”, and (2) is not applicable to more complex search spaces,
where there is no definable best size. This paper will introduce a modification
to sharing called scheduled sharing intended to remove the violation of the
“black box” principle and make sharing applicable to more complex problems.

Fixed-niche sharing

One method of implementing fixed-niche sharing is described in [7, 5]. We
largely followed their method in our implementation of sharing, which is
described below.

446 Michael E. Palmer and Stephen J. Smith

In any genetic optimization problem, we evaluate at selected points in the
search space some function embodying the parameters and constraints to be
optimized. For instance, if our goal was to find the highest point on a rugged
two-dimensional landscape, the phenotype of a single organism ¢ would be
pi, an (z,y) pair; and the function f(p;) = f; would yield the organism’s
phenotypic fitness, or the height of the landscape at that point.

In order to implement sharing, we will multiply f;, the phenotypic fitness
of organism 7, by nsh;, the normalized sharing factor calculated for the organ-
ism, to get g;, the organism’s overall fitness. The normalized sharing factor,
nsh;, is a number between zero and one and is generated in the following
way.

We define a difference function for any two organisms ¢ and j as

[e3
[L] if dz] < Oshare

Oshare

diff(di;)

= 1 otherwise

where Ogpare is the niche size and d;; = d(z;, z;), the distance between or-
ganisms ¢ and j measured by some metric defined on the phenotype or geno-
type space. In our case, the phenotype was an (z,y) pair, so we used a
two-dimensional cartesian distance function. (« was set to 1 in the results
described below.) The function diff(d;;) is low when ¢ and j are like each
other, that is, when they share the same niche.

We next define a sharing factor sh; for organism 7 relative to the rest of
the population:

o, — s difids)
J

sh;; is therefore low when organism 7 is competing intensely with its neighbors.

The normalized sharing factor, nsh;, is found simply by normalizing and
constraining the range of sh;:

Shi
nsh; =r — +(1-r)

where 7 is a number (0 < r < 1) that constrains the range of the normalized
sharing factor, nsh;. This limits the impact that the sharing factor can have
on the phenotypic fitness. (In the results presented below, r was set to .75.)

The normalized sharing factor for organism ¢, nsh;, will be a number
(1 —r) < nsh; <1 that will be as high as 1 when organism % is not required
to share at all, and will be as low as (1 — r) when the organism finds itself
sharing intensely with its many nearby neighbors in the phenotype space.

Finally, we multiply f; by nsh; to find g;, the overall fitness function for
organism %:

gi = nsh; - f;

Improved Evolutionary Optimization of Difficult Landscapes 447

Past work on sharing

In past work, it has been demonstrated that organisms can be more evenly
distributed across one-dimensional landscapes of five peaks of equal width
when they are forced to share with a fixed niche size tuned to the particular
width of the peaks [7, 5]. It is admitted in [5], however, that the niche size,
Oshare,; must be set carefully.” Sharing at a fixed niche size appropriate to a
five-peak landscape would only slow the optimization of a unimodal function
by distributing the trials more broadly than is necessary. A function with
ten times as many peaks would be better helped by sharing with one-tenth
the niche size. Moreover, a single best niche size cannot be meaningfully
defined for more complex search spaces. A complex space may contain peaks
of sizes varying by many orders of magnitude, over which it may be desirable
to evenly distribute organisms using sharing.

Most previous studies of sharing in genetic algorithms have been limited
in that they (1) required hand tuning of the size of the niche within which
organisms were to share with one another, (2) tested their algorithms by
optimization of simple one- or two-dimensional functions, and (3) simulated
small populations. These three limitations are interrelated: although such
hand tuning is feasible on simple functions, it is not possible on complex
functions or for practical applications of optimization. In addition, more
complex test functions with many local optima tend to require larger pop-
ulations for their adequate solution; most of these studies were conducted
without parallel computers and so used smaller populations.

2. Current modifications to sharing

The research discussed in this paper seeks to modify fixed-niche sharing to
be compatible with more difficult and more realistic test functions. We call
the primary modification scheduled sharing, in which the niche size is initially
large and then slowly reduced according to a schedule.

In addition, we describe sampled sharing, a method to remove the O(n?)
communications between processors required by standard sharing. The pos-
sibility of using sampling to speed up sharing was suggested, though not
implemented, in [7].

These improvements to standard sharing are tested using populations of
up to 65,536 organisms. An adequate trial for such large populations requires
a more difficult search space than has been used in past work. We describe
a method to generate rugged two-dimensional landscapes, with features on
many scales that are exploitable by genetic search. These landscapes have
many more local optima of different sizes, from global structures to structures
1.7 x 1077 the area of the landscape. They replace the simple, single-feature-
size landscapes used in past sharing work.

448 Michael E. Palmer and Stephen J. Smith

Scheduled sharing: generalization of fixed-niche sharing

This work introduces a technique called scheduled sharing, which begins a run
of n generations with a large niche size and then decreases the niche size as a
function of the percentage of the total run that has been completed. Starting
with a large niche size causes all organisms to repel each other, spreading
the organisms evenly across the space, and assures that the initial stage of
the search is a broad surveying of the landscape. As the niche size shrinks,
the organisms are allowed to cluster at a controlled rate in areas of the space
that are of greater interest. This clustering continues until, in the last stages
of the run, organisms cluster densely in the areas of greatest interest. This
assures that the smallest local optima will be searched fully before the run is
ended. The controlled relaxation to convergence is reminiscent of the process
of simulated annealing.

We wanted our schedule to cause the algorithm to obey the principles
of attention focusing [11], namely that it should initially encourage the algo-
rithm to choose the generally optimal large-scale areas of the space, and then
allow the focusing of attention first upon mid-sized and then upon smaller
details within the selected areas. Mauldin has also tried a similar method
in [10] by requiring a linearly decreasing minimum hamming distance be-
tween the genotypes of his population over time. We followed the example
of Kirkpatrick’s work on simulated annealing [9], choosing to equate the size
of the niche to an exponentially decaying function of the percentage of the
run completed:

current generation
&
(max generation)

Oshare = (width of landscape) - 97
where [is a parameter controlling how quickly the exponential function
drops off. (3 was set to 14 in the results described below.) The choice of
such a schedule is discussed fully in our results and conclusion.

Sampled sharing: fast sharing for large populations

Because such large populations were used in this work (up to 65,536 or-
ganisms), and because communication between processors is often the most
expensive part of a parallel computation, we did not sum over all 7 in the
calculation of sh;, but rather chose a random subset of the js each genera-
tion, and summed over those. We call this technique sampled sharing. We
sampled a fixed number across all population sizes (rather than the alterna-
tive of sampling a percentage of each population size), since, in the limit of a
large population, the variance of the error caused by sampling is dependent
upon S, the number of points sampled, rather than on S/P, the percentage
of the total population that is sampled.

Formally, if my(z) is the kth moment of the distribution in the variable z:

my(z) = Z x_§

Improved Evolutionary Optimization of Difficult Landscapes 449

then the variance of the error in the calculation of sh;, the sharing factor for
organism 7 as defined above on a population size P using a sample size S is

P+5S
P-S

var < [} <[—4mq (z)ms(z) + 3mi(z) + my(z)

—4ma(y)ma(y) + 3m3(y) + ma(y) |

In the limit of a large population, P — oo, this becomes

var 57 {%} < [—4my(z)ma(z) + 3ma(z) + my(z)
—4ma (y)ma(y) + 3m3(y) + ma(y)]

In other words, for large populations the variance due to sampling is depen-
dent only on the sample size S and on the moments (which depend on the
distribution), not on the population size P or on S/P [3].

Although it is straightforward to calculate the variance, it is not obvious
how large the variance would have to be to have a deleterious effect on the
performance of the algorithm. Therefore, we chose S empirically, finding
that sampling 164 points had no deleterious effect on the algorithm. The
derivation above assures us that using the same number of points should
yield the same variance over different populations.

3. Implementation

Scheduled sharing as described in this paper was implemented on the Connec-
tion Machine supercomputer, a massively parallel single-instruction multiple-
data (SIMD) machine. We mapped each organism to one virtual processor.
On the Connection Machine, a variable number of virtual processors can be
mapped to each physical processor actually present in the machine, which
allows easy change of population size. We used machines of up to 32,768
physical processors to simulate up to 65,536 organisms. For communication
between processors, the machine can be configured as an n-cube of arbitrary
dimension. We configured the machine as a two-dimensional grid and allowed
organisms to mate locally on the grid: each participating organism’s partner
was a random, nearby neighbor (within 5 random steps in the x or y direc-
tions). This was arranged so that each organism had exactly one partner.
Each pair of organisms had a 50% chance of mating and a 50% chance of
competing by simple replacement of the less fit organism by the more fit. A
fixed 2% mutation rate was used.

The optimization problem that our algorithm was made to solve was
the search for maxima on various rugged two-dimensional landscapes, as
described below. The organisms’ genetic material therefore consisted of an z
and a y chromosome. During crossover, the z and y chromosomes were lined
up parallel to one another and the cross was made at a randomly selected
point, the same point for both chromosomes. Each chromosome had 15 bits
of accuracy, yielding a total of 23° = 1.07 billion points in a given landscape.

450 Michael E. Palmer and Stephen J. Smith

Figure 1: Subfunction Sy plus subfunction S; yields landscape L.

Searching a rugged two-dimensional landscape

In past work concerned with the improvement of genetic algorithms there is
significant precedent for using the optimization of one- and two-dimensional
functions to study the performance of different algorithms, for example,
[6, 7, 1]. Such functions have the advantage that they are easy to visualize,
making it easier to speculate about why a particular change to an algorithm
has improved or degraded performance.

Past work on sharing itself has used landscapes with five or fewer local
optima, having equal-sized basins of attraction [7, 5]. This is understandable
in that the intent of the research was to introduce sharing and show that it
had a positive effect. Our intent was to investigate spaces where the basins of
attraction of the local optima varied dramatically in size, and in which there
were many more local optima. When searching such a space it is no longer
possible simply to set the niche size to the size of the basin of attraction,
since there is no single size. Problems containing significant numbers of local
optima and discontinuities also more closely reflect practical applications of
optimization.

Our two-dimensional test landscapes L were composed of the superposi-
tion of several two-dimensional trigonometric functions S; of different ampli-
tudes and frequencies. For instance, figure 1 shows two subfunctions Sy and
S, and the landscape L produced by their summation. In the figure, white
areas represent relatively high points on the landscape, and black areas rela-
tively low points. The actual landscapes we used, as described below, had up
to five superimposed subfunctions with grid sizes many orders of magnitude
smaller than those in the figure.

The subfunctions S; had two basic components: a random-grid function,
and the function cos(z) + cos(y).

The random-grid function, R,(z,y), returns a randomly initialized, fixed
number, 0 < a;; < 1, to all the (z, y) points within a given square (designated
by the pair (7,7)) of an n x n grid superimposed on the domain.

We used R, in combination with the cos(z) + cos(y) function to con-
struct subfunctions of different frequencies that were then summed to pro-
duce the final landscape. Within each subsquare of an n x n grid, the cosine
functions were given a different random offset and amplitude in both the z
and y directions with four copies of the R, function, R} --- R} (the random

Improved Evolutionary Optimization of Difficult Landscapes 451

offset and amplitude are included to allow discontinuity in the space). The
subfunctions S; were defined as

S; = R} cos (vix + R2) + R> cos (viy + R;)
The final landscapes used to test the genetic algorithms were then

= Wi(R}, cos (viz + R.) + R cos (viy + R;.)) + Lo

where W, are the weights dictating the contributions of the subfunctions at
the different frequencies determined by the numbers v;. Ly is a constant set
to ¥, 2W;, so that no point returns a negative fitness.

In the experiments described below we used an 4 of 5, building landscapes
out of five subfunctions, each with structure of a different frequency. These
ranged from global structures to tiny structures 1.7 x 1077 the total area of
the landscape. For a simple visualization, refer back to figure 1, depicting:
subfunction Sy, which has global structure; subfunction S;, which has struc-
ture on the scale of 1/16 the area of the landscape; and landscape L, the
summation of the two subfunctions.

For a given set of weights W;, an extremely large number of random land-
scapes can be generated. (We can for testing purposes, of course, generate
the same one many times by starting with the same random seed.) In the
set of all landscapes that could be randomly generated with a given set of
weights W;, not all landscapes will have the same global optimum; but the
highest global optimum of any landscape in the set is equal to 2L,. Although
the particular “easy” and “difficult” landscapes used in the experiments be-
low may not have the same global optimum, and do not have the same sets
of weights W,, their respective sets of weights do sum to the same L.

The landscapes defined above satisfy our desire to control precisely the
strengths and scales of the “hints” as to the location of probable optima that
are available to the genetic algorithm. In addition, we can easily generate a
large number of different landscapes that are like each other in the amount
of exploitable information they provide. The landscapes are two-dimensional
in this work, following precedent in genetic algorithms research for the use
of one- and two-dimensional algorithms, and because two dimensions are so
easily visualized; however, they could be expanded to higher dimensionality.
One possible drawback of the landscapes is the expense of the cosine cal-
culation, which may make the landscapes slower to generate than other test
functions that could be defined. The cosine, however, is also easy to visualize
and work with. One of the most important features of the landscapes is that
any point can be calculated “on the fly” by any processor; that is, the points
are not completely calculated once and stored, but rather each point is cal-
culated locally as it is needed, saving both time and memory costs, which
would be prohibitive for the vast landscapes of 1.07 billion points that we
used.

452 Michael E. Palmer and Stephen J. Smith

1.5 T T T T T T T T B T LR

i Convergence (on a Difficult Landscape) T

W x SHARE—SCHEDULED 7

o NO—SHARING
RE e R

1— =

o B -
o
g

) - 4
)
=~
o

> - =}
=]
o

o L -

0.5 — =

-0 Ll Ll L1

100 1000 10000 100000

population size

Figure 2: Convergence on a difficult landscape.

4. Results
Scheduled sharing inhibits convergence

The convergence of a population can be calculated by dividing the search
space into many disjoint subspaces or “buckets,” calculating x;, the percent-
age of the total population within each bucket, and summing the squares of
these percentages. This measure will be higher for a population that is more
concentrated in one or a few buckets, and lower for populations more evenly
distributed across the buckets. Therefore 3, z? is a useful measurement of
the convergence of a population. (An alternative measure sometimes used
is 3, z; Inz;.) Convergence measurements given later in this document were
performed with 256 buckets and give a rough measure of the self-similarity
of the population.

As figure 2 shows, scheduled sharing effectively inhibits convergence. Al-
though a non-sharing population will usually converge by generation n (where
n is dependent on the problem, the implementation, and the population size),
an algorithm using scheduled sharing can delay convergence for as long as
is desired, and can therefore continue to search efficiently. Figure 2 shows
the convergence after 350 generations for populations from 256 to 65,536

Improved Evolutionary Optimization of Difficult Landscapes 453

organisms (note that the population scale is logarithmic), with sharing and
without sharing. Whereas populations of all sizes are near total convergence
after 350 generations without sharing, all of the populations with sharing
have much lower convergence.

Easy landscapes and difficult landscapes

In the following discussion we refer to two classes of landscapes, which can
be constructed by setting the weights W, of the subfunctions. FEasy land-
scapes are those having a small number of local optima with wide basins of
attraction. They can be constructed by giving a large weight to the contribu-
tion of low-frequency subfunctions and a lesser weight to the contribution of
higher-frequency subfunctions. Difficult landscapes have a larger number of
local optima with small basins of attraction. These landscapes are generated
by weighting the contributions of higher-frequency subfunctions more than
the contributions of lower-frequency subfunctions. Slowed convergence—and
the broader surveying of the landscape that it implies—is most profitable on
such difficult landscapes.

Performance improves for difficult landscapes
and/or smaller populations

The scheduled delay of convergence effected by scheduled sharing, in certain
cases, improves the overall performance of the search. (Overall performance
is measured here by taking the average, over r runs, of the best organism
found at any point during a run of n generations.) In particular, controlled
convergence helped overall performance most when either the landscape was
difficult (as described above), or the population size was small, or both.

To give some measure of the absolute optimization performance of the two
genetic algorithms (scheduled sharing and non-sharing) on the landscapes,
we include in figures 3 and 4 a comparison to a random search algorithm. At
a given population, the random search algorithm performed the same number
of fitness function evaluations as the two genetic algorithms to which it is
compared.

Figure 3 shows overall performance of the scheduled sharing and non-
sharing genetic algorithms, and of the random search algorithm, on a rel-
atively difficult landscape, as defined above. The y axis shows overall per-
formance, and the x axis shows the population size (again on a logarithmic
scale). Note that scheduled sharing populations outperformed non-sharing
populations for all population sizes, including the highest. We hypothesize
that, for this more difficult landscape, the extra effort taken to broadly sur-
vey the entire landscape at the outset of the search, and then converge to
interesting areas in a controlled fashion, allowed the system to achieve better
overall performance.

The fact that the random search algorithm outperforms the non-sharing
genetic algorithm for the two lowest populations gives an indication of just
how difficult the landscape is: the non-sharing algorithm, at the two lowest

454 Michael E. Palmer and Stephen J. Smith

145 T T T T T T T ITTT T T T 1177
- Overall Performance on a Difficult Landscape —
- x SHARE-SCHEDULED -
o NO—SHARING
140 — O RANDOM—SEARCH =
|- repetitions per point: 10 —
max—generation: 350
1]
v =
L
g - -
-
= 135 — —
£ - _
5 -
E T
% - Al
o
g o _
= 130 — -
©
e - ad
2
8 T
125 — —
1 S (O I O N 0 1 L1 1 L1
120 l I
100 1000 10000 100000

population size

Figure 3: Performance on a difficult landscape.

populations, was unable to use the very few “hints” available in the struc-
ture of the landscape to beat a brute-force random search; it converged too
quickly to lesser local optima. The scheduled sharing algorithm, however,
whose delayed convergence encouraged a broader search of the difficult land-
scape, found enough hints to consistently outperform random search at all
population sizes.

Note that, for the difficult landscape in figure 3, sharing populations of a
given size do almost as well as non-sharing populations of four times the size.
Sharing does require some extra computation—a generation with sharing in
this case took about 1.5 to 2 times as long to compute as a non-sharing
generation (though this will be problem- and implementation-dependent).
This extra computational cost, however, is more than compensated for by
the fact that only one-quarter the population needs to be used to get nearly
the same performance.

We hypothesize that the control of convergence by scheduled sharing
allows more efficient use of the available population. This ability to use
a small population more efficiently is not such an advantage, however, if
the population size is already large relative to the difficulty of the land-
scape. For instance, see figure 4, which shows overall performance versus

Improved Evolutionary Optimization of Difficult Landscapes 455

140 T llllllll T T IIII|I| T T T TTTTT

Overall Performance on an Easy Landscape

— X SHARE-SCHEDULED N
© NO-SHARING
— © RANDOM-SEARCH 1

- repetitions per point: 10 =
135 max-generation: 350

overall maximum fitness

130 — ~
B 7
125 — oul
B 7
120 Ll Lol R RS
100 1000 10000 100000

population size

Figure 4: Performance on an easy landscape.

population size for an easier landscape. Note that, for all the lower popula-
tions, the scheduled sharing algorithm performs better than the non-sharing
algorithm. However, at the two highest populations on this relatively easy
landscape, the non-sharing algorithm outperforms the sharing algorithm. We
hypothesize that the scheduled sharing algorithm becomes less efficient than
the non-sharing algorithm by blindly forcing the population to adhere to its
schedule, instead of letting it quickly optimize on the details of the landscape,
which in this case would be sufficient. As a consequence, the scheduled shar-
ing algorithm does not have as much time to fine-tune and search preferred
areas intensively, and is outperformed in this case by the non-sharing algo-
rithm. In addition, at the largest populations, the random initialization of
the population probably provides to the non-sharing algorithm a fairly broad
initial survey of the space (at least, sufficiently broad for the easy landscape),
reducing the advantage gained by slowing convergence.

Both genetic algorithms beat the random search algorithm at all popu-
lation sizes on the easy landscape because the easy landscape gives many
exploitable hints to direct the genetic algorithms toward promising search
areas. At the highest population, the random search algorithm approaches
most nearly the performance of the scheduled sharing algorithm for two

456 Michael E. Palmer and Stephen J. Smith

reasons: (1) at the highest population, the scheduled sharing algorithm is
hindered most by the improper schedule (since, for large populations, a forced
broad survey is least needed); and (2) both of the genetic algorithms are lev-
eling off near the global optimum of the easy landscape, so the random search
algorithm is able to catch up.

5. Conclusions and future work

In this paper we hope to have given some direction to the study of sharing.
We believe that the mechanism of a sharing schedule provides flexible control
of the convergence of a genetic algorithm. It appears to be a good tool for
the job; we need now to learn how better to use the tool.

In removing the need to tune the niche size to the problem at hand,
we have created a need to tune the sharing schedule. This replacement is,
however, an improvement: whereas it doesn’t make sense to select a single
fixed niche size for any but the simplest of problems (i.e., as those with
“hints” only on one scale, such as a sine wave), it will probably be possible
in future work to discover ways of tuning the schedule.

Our results have shown that scheduled sharing can help overall perfor-
mance for difficult landscapes and/or populations that are small relative to
the difficulty of the landscape. The results suggest that easier landscapes
and/or larger populations would also run well if we could somehow detect
when it is allowable to “turngoff” the fixed schedule—to let the convergence
of the algorithm speed up. Obviously, to make a scheduled sharing algorithm
that is efficient at searching landscapes of widely varying difficulty we need
a “difficulty detector” to decide upon the schedule.

Without violating the principle of the “black box” search function, it may
be possible to introduce other information as feedback to define a problem-
dependent sharing schedule. Instead of fixing the niche size to a function of
“percentage of run completed,” we could tie it dynamically to some other
variable. For instance, the niche size could decrease as some function of the
current population convergence. (Convergence has been used as feedback
in [12].) Alternatively, the rate of improvement of the average performance
might provide some information about the landscape: as improvement slows
down, it implies that the population has efficiently searched the landscape
at the current niche size, and the niche size should be decreased to allow
exploration of detail. Other possibilities include the monitoring, and control
through manipulation of the sharing schedule, of Baker’s “percent involve-
ment” predictor of rapid convergence [2]; or of an entropy measure like that
of Wilson [13].

Any of the above feedback mechanisms could allow the niche size, instead
of changing blindly as a function of time, to change dynamically in response to
the behavior of the algorithm on a particular search space. These possibilities
represent the most promising avenues for future work.

Improved Evolutionary Optimization of Difficult Landscapes 457

Acknowledgments

The calculation of variance for sampled sharing is due to Anand Bodapati,
who gave freely of his expertise throughout this project. The authors would
also like to thank Gary Drescher, Woody Lichtenstein, and David Waltz
for their support and advice. The code for this work was built on top of
the DARWIN package, a public-domain genetic algorithm “skeleton” for the
Connection Machine System.

References

[1] D. H. Ackley, A Connectionist Machine for Genetic Hillclimbing (Norwell,
MA, Kluwer Academic Publishers, 1987).

[2] J. E. Baker, “Adaptive Selection Methods for Genetic Algorithms,” pages
101-106 in An International Conference on Genetic Algorithms, edited by
John J. Grefenstette (Hillsdale, NJ, Lawrence Erlbaum, 1988).

[3] A. Bodapati, personal communication (1991).

[4] L. Booker, “Improving Search in Genetic Algorithms,” pages 61-73 in Genetic
Algorithms and Simulated Annealing, edited by Lawrence Davis (Los Altos,
CA, Morgan Kauffman, 1987).

[5] K.Deb and D. E. Goldberg, “An Investigation of Niche and Species Formation
in Genetic Function Optimization,” pages 42-50 in Proceedings of the Third
International Conference on Genetic Algorithms, edited by J. David Schaffer
(San Mateo, Morgan Kaufmann, 1989).

[6] K. A. DeJong, “An Analysis of the Behavior of a Class of Genetic Adap-
tive Organisms” (Doctoral dissertation, University of Michigan), Dissertation
Abstracts International, 36(10) (1975) 5140B (University Microfilms No. 76-
9381).

[7] D. E. Goldberg and J. Richardson, “Genetic Algorithms with Sharing for
Multimodal Function Optimization,” pages 41-49 in Genetic Algorithms and
Their Applications: Proceedings of the Second International Conference on
Genetic Algorithms edited by John Grefenstette (Hillsdale, NJ, Lawrence Erl-
baum Associates, 1987).

[8] D. E. Goldberg, “Sizing Populations for Serial and Parallel Genetic Algo-
rithms,” pages 70-79 in Proceedings of the Third International Conference on
Genetic Algorithms, edited by J. David Schaffer (San Mateo, Morgan Kauf-
mann, 1989).

[9] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simulated
Annealing,” Science, 220 (1983) 671-680.

[10] M. L. Mauldin, “Maintaining Diversity in Genetic Search,” Internal working
document, Carnegie Mellon Department of Computer Science (1984).

458 Michael E. Palmer and Stephen J. Smith

[11] M. E. Palmer, “The Airplane-finder Project, or, An ‘Attention Focusing’ Net-
work for Pattern Recognition on ‘Clusterable’ Data Spaces,” pages 45-48 in
Proceedings of the 1990 Long Island I.E.E.E. Student Conference on Neural
Networks, edited by Frank P. Li (NYIT, 1990).

[12] C. G. Shaefer, “The ARGOT Strategy: Adaptive Representation Genetic
Optimizer Technique,” pages 50-55 in Genetic Algorithms and Their Ap-
plications: Proceedings of the Second International Conference on Genetic
Algorithms, edited by John Grefenstette (Hillsdale, NJ, Lawrence Erlbaum
Associates, 1987).

[13] S. W. Wilson, “Classifier Systems and the Animat Problem,” pages 199-228
in Machine Learning, Volume 2 (San Mateo, Morgan Kauffman, 1986).

