
Evolved Neurogenesis and Synaptogenesis
for Robotic Control: The L-brain Model

Michael E. Palmer
Department of Biology

Stanford University
Stanford, CA 94305, USA

+1 650-384-0729
mepalmer@charles.stanford.edu

ABSTRACT
We have developed a novel method to “grow” neural networks
according to an inherited set of production rules (the genotype),
inspired by Lindenmayer systems. In the first phase
(neurogenesis), the neurons proliferate in three-dimensional space
by cell division, and differentiate in function, according to the
production rules. In the second phase (synaptogenesis), axons
emerge from the neurons and seek out connection targets. Part of
each production rule is an augmented Reverse Polish Notation
expression; this permits regulation of the applicable rules, as well
as introduction of spatial and temporal context to the
developmental process. We connect each network to a (fixed)
robotic body with a set of input sensors and muscle actuators. The
robot is placed in a physically simulated environment and
controlled by its network for a certain time, receiving a fitness
score according to its behavior (the phenotype). Mutations are
introduced into offspring by making changes to their sets of
production rules. This paper introduces the “L-brain”
developmental method, and describes our first experiments with
it, which produced controllers for robotic “spiders” with the
ability to gallop, and to follow a compass heading.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Evolutionary Prototyping; I.2.8
[Artificial Intelligence]: Problem Solving, Control Methods, and
Search – heuristic methods; I.2.8 [Artificial Intelligence]:
Distributed Artificial Intelligence.

General Terms
Algorithms, Experimentation, Theory.

Keywords
Neurogenesis, synaptogenesis, L-system, L-brain, neural
networks, robotics, generative, developmental, hexapod.

1. INTRODUCTION
A long-term goal of Evolutionary Computing is to evolve
artificial artifacts that rival the complexity of naturally evolved
artifacts. We agree with Stanley and Miikkulainen [1] that a
sensible approach is the systematic identification and
characterization of those features of a developmental process that
can produce high evolvability in lineages that employ them. This
implies a belief in general developmental mechanisms that aid
evolvability in a broad range of contexts, if not in all contexts.
Because these presumptive mechanisms are so broadly useful,

they will function both in natural and artificial systems; thus we
can look to nature for candidates. These mechanisms appear in
living things today because they were selected over the long term
for improving evolvability in the lineages that carried them (a
hypothesis). Here, we introduce an artificial developmental
system that intentionally mimics several features of biological
development that we hypothesize aid evolvability. We show that
the system can produce neural networks that solve complex
control tasks in a physically simulated robot. In this introductory
paper, due to space constraints, we do not perform “knock-out”

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’11, July 12–16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-1-4503-0557-0/11/07...$10.00.

Figure 1: Six-legged “spider” robot body

1515

experiments to determine the relative importance of the
components, nor do we compare other methods; this will be
crucial future work. However, we do situate the system in the
context of previous work, as follows.

There is a long heritage of the use of Lindenmayer systems (L-
systems) [2] and other grammatical methods to produce neural
networks [3-6]. Whereas cellular encoding [7] and edge encoding
[8] consider the neural network as an abstract graph,
geometrically-oriented methods consider the process of
neurogenesis as unfolding in 2D [9] or 3D space. Others have
added synaptogenesis situated in 2D [10] or 3D space. Allowing
development to unfold in space helps to solve the problem
suffered by graph encodings of “node creation-order connectivity
bias” identified by Hornby [11]. The L-brain system, introduced
here, incorporates neurogenesis and synaptogenesis phases. It was
inspired by L-systems, but its production rules unfold directly into
three dimensions, like natural neurogenesis and synaptogenesis,
without a one-dimensional intermediary string. It is a marriage of
grammatical methods, which provide recursive module reuse,
with geometrically oriented methods, which provide a spatial and
temporal context in which the developmental process unfolds. We
introduce this context via conditional expressions that control
when and where developmental rules apply.

2. BODY MODEL
Our neural networks will be scored for their ability to properly
control a physically simulated robot model. For physical
modeling, we use the Bullet open-source physics engine; the
hexapod “spider” model is borrowed from one of the Bullet demo
programs; see Figure 1. Each leg has three degrees of freedom
(DOF): from the center of the head, looking outward along one of
the upper leg segments, that segment can move left-right and up-
down. The attached lower leg segment can move up-down only.
Neither joint can twist. (All constraints are slightly springy.) Each
joint axis has fixed limits to its range of motion. When an Output
neuron outputs a value of +1, it is calling for its corresponding
joint axis to be at its maximum range limit; a value of -1 calls for
the minimum range limit. A simulated “spring” between the actual
and requested positions generates a force on the joint axis.

3. BRAIN MODEL
3.1 Lindenmayer Systems
The simplest form of L-system consists of an ordered triplet G =
<V, ω, P>, where: V denotes an alphabet of symbols; ω is a word
(string of symbols) called the starting axiom, ω ∈ V+ (V+ is the
set of all strings of one or more symbols from V); and P ⊂ V × V*
is a finite set of production rules mapping from a single symbol in
V to a word in V* (V* is the set of all strings of zero or more
(finite) symbols from V). A production (a, χ) ∈ P is written as a →
χ. The letter a ∈ V and the word χ ∈ V* are called the predecessor
and the successor, respectively. Beginning with the axiom word
ω, the production rules are applied to all individual symbols in
parallel, replacing each predecessor symbol with a successor
word, generating a new (concatenated) word, called the L-string.
This rewriting process is iterated to produce a sequence of strings.
For example, one might define an axiom word of “a”, and define
the production rules “a → ab” and “b → ba”. The sequence of
resulting strings, starting from the axiom word, would then be: a
→ ab → abba → abbabaab →abbabaabbaababba → ...

When a termination condition is met, the final string is
(traditionally) interpreted by a predefined procedure to construct
the phenotype. Parametric L-systems [2] include a conditional
expression with each production rule: a rule with a matching
predicate is applicable only if the conditional evaluates to true.

3.2 The L-brain Model
The “L-brain” model (named in honor of Lindenmayer) produces
a connected neural network in two phases that unfold directly into
three dimensions: 1) neurogenesis, and 2) synaptogenesis.

Figure 2: Neuron growth and differentiation; colors

represent cell states.

1516

3.2.1 Neurogenesis
In the neurogenesis step, an axiom (initial set) of several cells
repeatedly divides in three dimensions. A cell has a three-
dimensional position, and an integer type. In an L-brain
production rule, the predicate is an integer, and the successor is a
pair of integers. At each division of a parent cell, we search for
production rules with a predicates the matching parent cell’s type,
with a conditional that evaluates to true (as detailed below). When
a matching rule is selected, the parent is removed and two
daughter cells are placed physically on either side of the parent’s
position in space; each is assigned a type from one of the two
integers in the successor. By a process of repeated divisions of all
cells, a set of initial cells produces a (usually) larger collection of
cells, each with its position and type. At the top left of Figure 2,
we have placed 3 “axiom” (initial) neurons along a line parallel to
the Z axis; the blue color indicates that we initialized them all to
the same cell type. In the second panel (top right), each cell has
divided once in the X direction; the colors indicate the cell types
of these 6 cells. In the third and fourth panels (second row), two
more divisions in X occur. Three divisions in the Y (up) direction
follow, and a final division is made in the Z direction. A full
complement of 384 neurons has been produced, with varying cell
types, as indicated by color.

If there is no production rule
that possesses a matching
predicate for a cell’s type, or if
the conditionals for all such
production rules evaluate to
false, the cell will not divide.
This is a normal part of the
process. As illustrated in
Figure 3, this is a way to
produce irregular structures of
fewer than the maximum
complement of neurons. On
the other hand, if more than
one rule is applicable, one is
chosen stochastically.

3.2.1.1 The Multi-stack
Part of each production rule is a conditional expression, which is a
sequence of tokens defining a Reverse Polish Notation (RPN)
arithmetic expression operating on a set of stacks that we call the
“multi-stack”. Our description of this method, below, may
initially seem complex and ad hoc. However, we had two design
goals in mind: 1) the expressions should embody a rich and
expressive analogy to biological gene regulation, and 2) they
should behave “sensibly” under mutation and recombination.

Evaluation of an expression fills the multi-stack with values of
several types. We use four independent stacks: a stack of floating
point type; a stack of boolean type; and two separate stacks of
integer type called the “want-in” and “want-out” stacks. (The
latter two are used to compute the connections “desired” by axons
during synaptogenesis; they contain integer neuron types.)
Importantly, the boolean value on the top of the boolean stack
after evaluation of the expression determines whether the
conditional evaluates to true or false. Thus, the contents of the
expression (in addition to the predicate) control which production
rules apply. Special tokens introduce the temporal and spatial
context of the cell into the evaluation of the expression, thus
influencing development.

3.2.1.2 Token types
The token types are divided into several classes (Operator,
Constant, Program Counter, and Special). As each token in the
expression is evaluated in sequence, it may affect one or more of
the stacks, as outlined in Table 1.
Table 1. Expression tokens and their effects on the multi-stack

Token
type

Po
p

flo
at

Pu
sh

 fl
oa

t

Po
p

bo
ol

Pu
sh

 b
oo

l

Pu
sh

 w
an

t-
in

Pu
sh

 w
an

t-
ou

t

+, -, *, / 2 1 0 0 0 0

Enter 1 2 0 0 0 0

Roll 1 0 0 0 0 0

Swap 2 2 0 0 0 0

>, <, >=, <=, == 2 0 0 1 0 0

or, and, xor 0 0 2 1 0 0

not 0 0 1 1 0 0

enter (bool) 0 0 1 2 0 0

roll (bool) 0 0 1 0 0 0

Operator

swap (bool) 0 0 2 2 0 0

float value 0 1 0 0 0 0

bool value 0 0 0 1 0 0

want-in value 0 0 0 0 1 0
Constant

want-out value 0 0 0 0 0 1

ifjump (jumps to
next P.C. token) 0 0 1 0 0 0

nop 0 0 0 0 0 0
Program
Counter

end (stops) 0 0 0 0 0 0

xpos, ypos, zpos,

division-axis,
division-count

0 1 0 0 0 0
Special

is-synaptogenesis 0 0 0 1 0 0

Operator tokens may push or pop values to/from one or more
stacks. For example, the “+” operator pops two values from the
floating point stack, and pushes their sum back onto the same
stack. In contrast, the “or” operator pops two booleans off the
boolean stack, and pushes their or back onto the same stack. Some
operators affect more than one stack: for example, the “>”
operator pops two values from the floating point stack, pushing
“true” onto the boolean stack if the second is greater than the first,
and “false” if not. The “Enter” operator pops a value off the
floating point stack, and pushes this value twice. The “Roll”
operator simply pops one value from the floating-point stack. The
“Swap” operator swaps the top two values on the floating-point
stack. The boolean counterparts “enter”, “roll”, and “swap” apply
the same operations to the boolean stack. (A detail: when a value
is popped from an empty stack, the floating point stack returns

Figure 3: Irregular

structures can result if not
all cells divide.

1517

0.0, the boolean stack returns false, and the want-in and want-out
stacks return -1.)

Constant tokens push a floating point, boolean, “want-in”, or
“want-out” value to the corresponding one of the four stacks.

There are several tokens that affect the Program Counter. The
“ifjump” token pops a boolean; if it is true, the Program Counter
skips tokens until it comes to one of “ifjump”, “nop”, or “end”.
The “end” token stops evaluation. Of course, “nop” has no direct
effect on the multi-stack; however, it is a destination point for
jumps. Thus the positions of Program Counter tokens in an
expression can dramatically affect the final stack contents.
Our first design goal for the RPN expressions was that they permit
the spatial and temporal context of the cell to regulate
development. The Special tokens directly realize this function.
The “xpos”, “ypos”, and “zpos” tokens push the X, Y, or Z
position value of the parent cell onto the floating-point stack. The
“division-axis” token pushes a floating-point value of 0, 1, or 2 if
the current cell division is in the X, Y, or Z direction. The
“division-count” token pushes a floating-point value that
increments by one at each cell division, starting from zero.
Finally, the “is-synaptogenesis” pushes a boolean value specifying
whether development has entered the synaptogenesis phase.

As an example, if we evaluate the following expression,

(6, 5, Swap, Enter, t, f, t, 4, 1, >, and, +, 2, ifjump, 3, 3, nop, 3,
end, not)

the floating point stack will subsequently contain: (5, 12, 2, 3); the
boolean stack will contain: (t, f); and the ifjump did occur. The
want-in and want-out stacks are not involved.

Our second design goal was for the expressions to not be “brittle”
under mutation and recombination. We mutate the expressions by
inserting, deleting, and replacing tokens. They may also be
recombined sensibly (e.g., with crossover at Program Counter
tokens), although the experiments shown here do not include sex.

3.2.2 Synaptogenesis
After neurogenesis is complete, the process of synaptogenesis, or
the formation of neural connections, proceeds in three steps.

3.2.2.1 Placement of Input and Output Neurons
In the first phase of synaptogenesis, we place a fixed set of Input
and Output neurons into the neural field. The 18 red spheres
shown in Figure 4 are the Output neurons actuating the spider’s
18 DOF. The neurons have abbreviated labels, as follows: the 3
right legs (from front to back on the body) are named R0, R1, R2;
the three left legs (front to back) are L0, L1, L2. Each leg has two
joints j0, and j1, corresponding to the upper and lower leg
segments. Joint j0 has two moveable axes a0, a1 whereas joint j1
has only a0. For example, the actuator to move the upper segment
of the front right leg up-and-down is enervated by R0j0a0.

The Input neurons are shown in green. The robot has nine inputs:
velX, velY, and velZ are the current X, Y, and Z velocities of the
spider’s “head” in the world coordinates. Input xFront indicates
the dot product of a vector pointing out the “front” of the spider
with the world X axis (i.e., it is a compass that reads +1 when the
spider is facing North (positive world X), and -1 for South.) Input
zFront indicates the dot product of a vector pointing out the front
of the spider with the world Z axis. (It reads +1 when the robot
faces world East, and -1 for West.) Input yUp indicates the dot

product of the spider’s “up” with the world Y axis (+1 for
upright). The rates of change per time step of the latter three
inputs are provided as inputs in xFrontVel, zFrontVel, and yUpVel
respectively.

All neurons of Input and Output class (and all other neurons)
produce output values in the range [-1, 1]. Suitable scaling is
applied to the values of angles, etc. relating to the robot body.

3.2.2.2 Assignment of Neuron Classes
After the Input and Output neurons are in place, we return to the
set of cells produced in the neurogenesis phase; call these cells the
“protoneurons”. We perform one more application of the
production rules to each protoneuron. (As developmental cues at
this time, the token “is-synaptogenesis” returns “true”; “division-
axis” and “division-count” return -1.) For each protoneuron, if a
production applies, then a single neuron is generated at the
protoneuron’s position. The type of the neuron is set to the first of
the pair of successor values (and the second is ignored). In
addition to its integer type, the neuron is assigned one of the
following classes: Sigmoid, Delay, Constant, or Oscillating.

Figure 4: Placement of Input (green) and Output (red)

Neurons.
Sigmoid neurons are familiar from the neural network literature:
they sum their inputs plus a “bias” value, and apply a sigmoid
normalization function to keep output in the range [-1, 1]. When a
sigmoid neuron is produced, its bias and a (which controls the
steepness of the sigmoid curve) parameters are required; we will
obtain these (as described below) from the multi-stack. In the
experiments shown here, all Sigmoid neurons have two inputs
available for connection.

Constant neurons produce a constant output value; when
initialized they require that value. They have no inputs.

Delay neurons take their input and buffer it for delay-length time
steps in a FIFO queue, then output it. The queue is initially filled
with zeroes. Delay neurons require a delay-length parameter.
They have one input.

1518

Oscillating neurons oscillate sinusoidally between -1 and 1 over a
period of period time steps; they require this parameter. They
have no inputs.

All the required values for each neuron type above are derived
from the contents of the multi-stack after the last evaluation (i.e.,
when the final neuron type was produced from the protoneuron).
Sigmoid neurons obtain their a and bias parameters from the
floating point stack; these are normalized to the range [-1,1] for
the bias, and (0, 1] for a. Constant neurons obtain their value
normalized to the range [-1, 1]. Oscillating neurons obtain their
period value by popping a sequence of values off the boolean
stack, and using these booleans to select one from the following
set of possible period values: {90, 60, 30, 20}. (Units are in
simulation time steps.) Delay neurons are provided with a delay-
length in a similar way from the set {5, 10, 20, 40}.

In the experiments described here, we included three neuron types
of class Delay, three types of class Sigmoid, three types of class
Oscillating, and none of class Constant. The class of a neuron
determines its behavior (e.g., an Oscillating neuron oscillates) in
the network, as well as the parameters it requires), whereas the
type of a neuron is used to determine which axons seek to connect
to that neuron. Each of the nine Input neurons receives a unique
type. The 18 Output neurons each receive one of three types
unique to their joint and axis of control (i.e., j0a0, j0a1, j1a0 each
receive a unique type; see discussion of Figure 4). Thus, axons
connecting to Output neurons must “seek” them (see below) both
by their type, and by their position in the neural field.

3.2.2.3 Axon Searching
With all neurons in place, and having assigned the neuron types
(and classes), we start to form synaptic connections. Consider a
focal neuron. It produces a single axon from its output. That axon
investigates each input of all other neurons that are downstream
(i.e., toward the Output neurons; the networks are feed-forward)
within a certain spatial neighborhood, to see if they are suitable
for connection, in the following sense. We turn again to each
protoneuron’s multi-stack, which is queried for a set of “want-in”
values to be assigned to each of a given neuron’s inputs, and a
single “want-out” value to be assigned to a given neuron’s single
output (all neuron classes have a single output). As the axons
investigate the inputs of the downstream neighbors, we compute
what we call the “happy factor” of each potential synaptic
connection by adding 1 if the “want-out” of the focal neuron
matches the type of the downstream neuron, and adding 1 if the
“want-in” of the particular input of the downstream neuron
matches the focal neuron’s type. All axons investigating a
particular input of a downstream neuron compete by this metric,
and the best makes a final synaptic connection (ties are broken by
shortest inter-neuron distance).

3.2.2.4 Two unevolved L-brain examples
Figure 5 shows renderings of two example L-brains (generated
neural networks). A colored sphere indicates the position in space
of each neuron. Input neurons are colored red, Output neurons
green, Delay neurons light blue, Sigmoid neurons purple, and
Oscillating neurons yellow. (The specific type of a neuron within
its class is not rendered.) The size of each sphere indicates the
current output value of the neuron: the largest spheres in the
renderings indicate the highest possible output value (i.e, a value
of 1), and the smallest spheres (still of small positive radius)
indicate the lowest possible output value (i.e., a value of -1).

Lines indicate the synaptic connections, with the line width
indicating the absolute value of the connection weight. Black lines
indicate positive weights and red lines indicate negative weights.

Figure 5: Two unevolved (randomly initiated) L-brains

For each of the two panels, we randomly generated a set of
production rules (comprising one genotype), including random
expressions, and then used it to produce an L-brain. This process
is not necessarily deterministic if there are multiple matching
productions at any point; thus each panel of the figure shows one
possible phenotype for its genotype. The L-brain at left did
produce robot movement: two Oscillating (yellow) neurons can be
seen directly connected to several Outputs (red). In the L-brain at
right, sequences of neurons including Sigmoid (purple) and Delay
(light blue) neurons cascade from the Inputs (green); if we
artificially introduce fluctuating signals onto the Inputs, they echo
downstream through the Sigmoid and Delay neurons. Neither of
these L-brains produces a proper gait.

4. EVOLUTIONARY MODEL
4.1 Mutation
The genotype of an individual is a set of production rules. We
initialized all the individuals in the experiments below with 30
random production rules; the conditional expression of each
production initially contained 40 random tokens.

Mutation is applied to an individual by considering each
production rule in turn, and altering it with probability µ = 0.05
(per rule per individual per generation). A production may be
altered by changing its predicate (an integer) or one of its two
successors (both integers), or by changing its conditional
expression. If the expression is to be altered, tokens may be either:
1) mutated (the token is varied within its token class, e.g., an
Operator token is replaced by a new random Operator token), 2)
replaced (with a new random token of any class – a more drastic
change than a token mutation), 3) added (a new random token is
inserted in the expression), 4) deleted, or 5) two tokens may be
swapped. It is also possible to add, delete, or clone production
rules, but we did not do so in the experiments shown here.

4.2 Population structure
We conducted our evolutionary runs using metapopulations (sets
of local populations, or “demes”, connected by migration of
individuals). We populated each of 16 demes with 50 individuals,
with migration rate mig = 0.01. We use a metapopulation model
because our previous experience [12] suggests that, if the
migration rate is low enough, population subdivision protects rare,
potentially evolvable genotypes, thereby increasing the rate of
adaptation. In this way, a subdivided population effectively
exploits a large population size better than a panmictic population.

1519

4.3 Advancing one generation
A generation begins with a set of individuals in each deme. An L-
brain phenotype is generated from the genotype of each
individual. All 50 phenotypes in a deme are placed together in a
physical simulation, randomly distributed in position and
orientation in a square area on a large plane, as shown in Figure 6.

Each physical (simulated)
robot body is enervated by its
L-brain (neural network). The
simulation is run for a certain
time (2000 time steps in the
experiments here; at 60 fps this
is 33 seconds in simulation
world time), and each
individual is scored on its
performance at a task that is
fixed for that experiment
(tasks described below). All
individuals in a deme
reproduce competitively,
proportional to their scores,
asexually producing 50
offspring individuals for the
next generation. (Sexual

recombination between sets of production rules is possible, but we
did not apply it in the experiments described here.) Mutations are
applied. When all demes have been updated, migration among the
demes occurs, and a generation is completed.

5. RESULTS
5.1 Scoring
In the experiments below, we employ two scoring functions: one
called “Go Far” which rewards the individuals for spending time
far from their origin point; and another called “Go North” that
rewards individuals for spending time at high absolute value of Z,
and especially at positive X (“North”) in world coordinates.

Figure 7: The “Go Far” (left) and “Go North” (right) per-
generation scoring functions.

Figure 7 plots the “Go Far” and “Go North” per-generation
scoring functions, which are Y = sqrt(X2 + Z2), and Y = X + 0.5 *
sqrt(Z2), respectively. The Y value corresponding to an
individual’s X-Z position is accumulated at each generation
(starting from an initial score of zero) to produce its final score.

5.2 The “Go Far” task: acquired galloping
At the beginning of an experiment, most of the randomly
initialized spiders stand passively with no motion. Some

rhythmically tap a foot. Others may writhe disturbingly, or even
flip themselves over. (See online video here [13].)

Figure 8: Mean pop. score on “Go Far”, ten replicate runs.

However, adaptations soon arise in one deme or another, evolve,
and spread to other demes. Figure 8 shows the increase in
population mean score in ten independent replicate runs (16
demes of 50 individuals each) as the spiders begin to wiggle
purposefully, and, after 1000 or so generations, to gallop.

Figure 9: Evolution produces the ability to gallop.

Figure 9 shows a rendering of the physical simulation, with the
camera placed in the path of some of the galloping spiders. (See
online video here [13].) There were a variety of galloping gaits
produced in the replicate runs; however, within a run, the best
spiders at a given moment tend to be genetically related, so their
gaits are often similar. In the figure, the “front” left and right legs
(L0 and R0) are colored white. The closest spider is galloping
toward the camera but “backward and sideways”. This is
unsurprising, since the score does not require “forward” motion.

Figure 6: Fifty spiders are

initially distributed
randomly in a small square

area on a large plane.

1520

Figure 10: An evolved L-brain that produces a galloping gait.

Figure 10 shows four views of one of the evolved galloping L-
brains. In the top left panel, we look up the X axis from the
Outputs (red) to the Inputs (green); some regular spatial patterning
of Oscillating (yellow), Sigmoid (purple), and Delay (light blue)
neurons is apparent. In the top right panel we zoom in closer to
the red Outputs; the green Inputs can be seen in the distance.

The two snapshots at the bottom left and right of Figure 10 are
taken at different points in time. At bottom left, the yellow
Oscillating neurons are large (indicating high output value); at
bottom right, they are small (indicating low output value). These
were oscillating at a period of about 1 second [13], producing
downstream oscillating changes in the network, and ultimately in
the outputs, to produce the galloping gait in the spider robot [13].

5.3 The “Go North” task: acquired steering
by compass
We noticed that in many of the good solutions to the “Go Far”
task, the Input neurons were unconnected. In fact, we could find
no evolved “Go Far” brain in which the inputs had any apparent
effect on the operation of the network; physically shaking the
robots (which changes their sensor input values) produced no
apparent change in the outputs. A fixed gait driven by Oscillating
neurons, without influence by the inputs, was sufficient to succeed
at the “Go Far” task. Thus, we were curious if the L-brains could
be evolved to integrate their sensor inputs.

The “Go North” per-generation fitness function (right side of
Figure 7) rewards robots for spending time at high absolute values
of Z, and high positive values of X. Translation in X receives
double the reward as translation in Z, per unit distance. Here, high
fitness requires consultation of the input sensors.

Figure 11 shows the increase in population mean score in ten
independent replicate runs. The problem appears to be harder than
“Go Far”, but many replicates still find an excellent solution.

Figure 11: Mean pop. score on “Go North”, ten replicates.

In Figure 12, we take one successful population of spiders and
compare their initial distribution (left panel) on the plane with
their distribution after they have been enervated for ~50 seconds
(right panel). They have generally run North (“up” in the image).
When the evolved robots are first placed on the plane, they begin
to turn themselves to the North; as they face nearly northward, an
oscillating galloping motion grows. If the experimenter disturbs a
robot by turning its heading away from North, it again goes into
turning mode, then begins to gallop again. (See video [13].)

Figure 12: A successful run of “Go North”.
Remarkably, one metapop-
ulation found a “Go North”
solution with a galloping gait
that used no Oscillating
neurons. One of the L-brains
with this behavior is shown in
Figure 13. It produces this
behavior by involving the
physical simulation in a
feedback loop. The loop runs
from the velY Input, through a
chain of Delay neurons up the
middle of the figure, connecting
in turn to the actuators for the
up-down axis of two of the legs
(L0 and L1). When these two
legs drive down (up), the front of the robot lifts (drops), raising
(lowering) velY. Thus an oscillating signal propagates around the
loop [13], making the robot gallop.

Figure 13: A successful "Go

North" L-Brain with no
Oscillating neurons.

1521

6. DISCUSSION
A major long-term goal of Evolutionary Computing is to evolve
artifacts that rival the complexity of living things. Living things
became complex by accretive addition of mechanisms over
macroevolutionary timescales. Therefore we wish to understand
how to drive the accumulation of complexity in artificial
evolution. Two factors will be required: 1) the developmental
process must admit the possibility of accretive addition of
mechanisms over macroevolutionary time periods; and 2) we must
understand how to encourage (i.e., select for, directly or
indirectly) such increase.
Gould [14] (p. 282) argues that selection for complexity was not
necessary for living things to become more complex over time.
Rather, life necessarily began at the “left wall” of minimal
complexity, and “every once in a while, a more complex creature
evolves and extends the range of life’s diversity in the only
available direction.” (p. 214) Thus, if our artificial system first
admits the possibility of the accretion of complexity, we can
expect some increase in complexity due to drift, in the absence of
selection for it. However, we may greatly accelerate the process
by selecting for complexity, directly or indirectly. Moreover,
when we practice artificial evolution, we need not start at the “left
wall”, i.e., with the simplest system possible. Rather, we can “take
a short cut” by borrowing mechanisms (e.g., sexual reproduction,
geometrically-oriented development) from living things, rather
than evolving them entirely from scratch, if we believe (or, better
yet, if we can demonstrate) that they aid the evolvability of
complexity.
How do we “select for complexity”? When species are in
competition, there will be an indirect pressure to invade new
niches, where competitor species cannot follow due to lack of
gene flow carrying the innovation that allows invasion of a new
niche. (This force is present but weaker in intraspecies
competition.) We hypothesize that, in a sufficiently complex
environment, organisms with the ability to accrete complexity
(which is a type of evolvability) will sometimes be able to invade
niches that require unprecedented organismal complexity to
exploit, and are thus currently empty. For example, when all life
was unicellular, the complex physical world nonetheless admitted
empty niches that could be – and eventually were – filled by
multicellular organisms. Thus interspecies competition, which
implies an indirect selection to diversify, will in a sufficiently
complex environment also select for the accretion of complexity.
This first introductory paper describes a new platform designed to
explore the issues posed above. The L-brain system is intended to
“take a short cut” by borrowing mechanisms from biology that
will permit further accretion of complexity. The choice of the
pseudo-physical robotic control problem was also intentional: it
will allow us to provide a sequence of tasks (niches) of increasing
difficulty, including both difficult control tasks, as well as
competitive and social behaviors. It is our intention to use the
complete platform in the future to investigate by “knock out”
experiments what components of the L-brain system are most
important for the acquisition of complexity.

There are a number of online videos related to this paper [13]. We
plan to release our source code in the future [15].

7. ACKNOWLEDGMENTS
We would like to acknowledge NIH grant GM28016 for funding
for our computer cluster (160 cores). Thanks to JYLP, CRP, and
CWP for much support.

8. REFERENCES
[1] Stanley, K. O. and Miikkulainen, R. A Taxonomy for

Artificial Embryogeny. Artificial Life, 9, 2 (2003), 93-130.
[2] Prusinkiewicz, P. and Lindenmayer, A. The Algorithmic

Beauty of Plants. Springer-Verlag, 1996.
[3] Hornby, G. S. and Pollack, J. B. Body-Brain Co-evolution

Using L-systems as a Generative Encoding. in Genetic and
Evolutionary Computation Conference (San Francisco, CA,
2001), 868-875.

[4] Kitano, H. Designing Neural Networks using Genetic
Algorithms with Graph Generation System. Complex Systems,
4 (1990), 461-476.

[5] Mjolsness, E., Sharp, D. H. and Reinitz, J. A Connectionist
Model of Development. J. theor. Biol., 152 (1991), 429-453.

[6] Sims, K. Evolving 3D Morphology and Behavior by
Competition. in Artificial Life IV (1994). MIT Press, 28-39.

[7] Gruau, F. Genetic synthesis of boolean neural networks with a
cell rewriting developmental process. in International
Workshop on Combinations of Genetic Algorithms and Neural
Networks (Baltimore, MD, 1992), 55-74.

[8] Luke, S. and Spector, L. Evolving Graphs and Networks with
Edge Encoding: Preliminary Report. in Late Breaking Papers
at the Genetic Programming 1996 Conference (Stanford,CA,
1996), 117-124.

[9] Kodjabachian, J. and Meyer, J.-A. Evolution and
Development of Neural Controllers for Locomotion,
Gradient-Following, and Obstacle-Avoidance in Artificial
Insects. IEEE Transactions on Neural Networks, 9, 5 (1998),
796-812.

[10] Nolfi, S. and Parisi, D. Growing neural networks. in The
Handbook of Brain Theory and Neural Networks (1992).
Addison-Wesley, 431-434.

[11] Hornby, G. Shortcomings with Tree-Structured Edge
Encodings for Neural Networks. in Genetic and Evolutionary
Computation Conference (Seattle, WA, 2004), 495-506.

[12] Palmer, M. E. and Feldman, M. W. Spatial Environmental
Variation Can Select for Evolvability. Evolution (2011), in
press.

[13] Several videos related to this paper are available at:
http://www.youtube.com/user/geccospider

[14] Gould, S. J. The Richness of Life: The Essential Stephen Jay
Gould. W. W. Norton & Company, 2007.

[15] We plan to release our source code in the future. Please check
for updates at: http://www.mepalmer.net/geccospider

1522

