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ABSTRACT 
We have developed a novel method to “grow” neural networks 
according to an inherited set of production rules (the genotype), 
inspired by Lindenmayer systems. In the first phase 
(neurogenesis), the neurons proliferate in three-dimensional space 
by cell division, and differentiate in function, according to the 
production rules. In the second phase (synaptogenesis), axons 
emerge from the neurons and seek out connection targets. Part of 
each production rule is an augmented Reverse Polish Notation 
expression; this permits regulation of the applicable rules, as well 
as introduction of spatial and temporal context to the 
developmental process. We connect each network to a (fixed) 
robotic body with a set of input sensors and muscle actuators. The 
robot is placed in a physically simulated environment and 
controlled by its network for a certain time, receiving a fitness 
score according to its behavior (the phenotype). Mutations are 
introduced into offspring by making changes to their sets of 
production rules. This paper introduces the “L-brain” 
developmental method, and describes our first experiments with 
it, which produced controllers for robotic “spiders” with the 
ability to gallop, and to follow a compass heading. 

Categories and Subject Descriptors 
D.2.2 [Software Engineering]: Evolutionary Prototyping; I.2.8 
[Artificial Intelligence]: Problem Solving, Control Methods, and 
Search – heuristic methods; I.2.8 [Artificial Intelligence]: 
Distributed Artificial Intelligence. 

General Terms 
Algorithms, Experimentation, Theory. 

Keywords 
Neurogenesis, synaptogenesis, L-system, L-brain, neural 
networks, robotics, generative, developmental, hexapod. 

1. INTRODUCTION 
A long-term goal of Evolutionary Computing is to evolve 
artificial artifacts that rival the complexity of naturally evolved 
artifacts. We agree with Stanley and Miikkulainen [1] that a 
sensible approach is the systematic identification and 
characterization of those features of a developmental process that 
can produce high evolvability in lineages that employ them. This 
implies a belief in general developmental mechanisms that aid 
evolvability in a broad range of contexts, if not in all contexts. 
Because these presumptive mechanisms are so broadly useful, 

they will function both in natural and artificial systems; thus we 
can look to nature for candidates. These mechanisms appear in 
living things today because they were selected over the long term 
for improving evolvability in the lineages that carried them (a 
hypothesis). Here, we introduce an artificial developmental 
system that intentionally mimics several features of biological 
development that we hypothesize aid evolvability. We show that 
the system can produce neural networks that solve complex 
control tasks in a physically simulated robot. In this introductory 
paper, due to space constraints, we do not perform “knock-out” 
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Figure 1: Six-legged “spider” robot body 
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experiments to determine the relative importance of the 
components, nor do we compare other methods; this will be 
crucial future work. However, we do situate the system in the 
context of previous work, as follows. 

There is a long heritage of the use of Lindenmayer systems (L-
systems) [2] and other grammatical methods to produce neural 
networks [3-6]. Whereas cellular encoding [7] and edge encoding 
[8] consider the neural network as an abstract graph, 
geometrically-oriented methods consider the process of 
neurogenesis as unfolding in 2D [9] or 3D space. Others have 
added synaptogenesis situated in 2D [10] or 3D space. Allowing 
development to unfold in space helps to solve the problem 
suffered by graph encodings of “node creation-order connectivity 
bias” identified by Hornby [11]. The L-brain system, introduced 
here, incorporates neurogenesis and synaptogenesis phases. It was 
inspired by L-systems, but its production rules unfold directly into 
three dimensions, like natural neurogenesis and synaptogenesis, 
without a one-dimensional intermediary string. It is a marriage of 
grammatical methods, which provide recursive module reuse, 
with geometrically oriented methods, which provide a spatial and 
temporal context in which the developmental process unfolds. We 
introduce this context via conditional expressions that control 
when and where developmental rules apply. 

2. BODY MODEL 
Our neural networks will be scored for their ability to properly 
control a physically simulated robot model. For physical 
modeling, we use the Bullet open-source physics engine; the 
hexapod “spider” model is borrowed from one of the Bullet demo 
programs; see Figure 1. Each leg has three degrees of freedom 
(DOF): from the center of the head, looking outward along one of 
the upper leg segments, that segment can move left-right and up-
down. The attached lower leg segment can move up-down only. 
Neither joint can twist. (All constraints are slightly springy.) Each 
joint axis has fixed limits to its range of motion. When an Output 
neuron outputs a value of +1, it is calling for its corresponding 
joint axis to be at its maximum range limit; a value of -1 calls for 
the minimum range limit. A simulated “spring” between the actual 
and requested positions generates a force on the joint axis. 

3. BRAIN MODEL 
3.1 Lindenmayer Systems 
The simplest form of L-system consists of an ordered triplet G = 
<V, ω, P>, where: V denotes an alphabet of symbols; ω is a word 
(string of symbols) called the starting axiom, ω ∈ V+ (V+ is the 
set of all strings of one or more symbols from V); and P ⊂ V × V* 
is a finite set of production rules mapping from a single symbol in 
V to a word in V* (V* is the set of all strings of zero or more 
(finite) symbols from V). A production (a, χ) ∈ P is written as a → 
χ. The letter a ∈ V and the word χ ∈ V* are called the predecessor 
and the successor, respectively. Beginning with the axiom word 
ω, the production rules are applied to all individual symbols in 
parallel, replacing each predecessor symbol with a successor 
word, generating a new (concatenated) word, called the L-string. 
This rewriting process is iterated to produce a sequence of strings. 
For example, one might define an axiom word of “a”, and define 
the production rules “a → ab” and “b → ba”. The sequence of 
resulting strings, starting from the axiom word, would then be:  a 
→ ab → abba → abbabaab →abbabaabbaababba → ... 

When a termination condition is met, the final string is 
(traditionally) interpreted by a predefined procedure to construct 
the phenotype. Parametric L-systems [2] include a conditional 
expression with each production rule: a rule with a matching 
predicate is applicable only if the conditional evaluates to true. 

3.2 The L-brain Model 
The “L-brain” model (named in honor of Lindenmayer) produces 
a connected neural network in two phases that unfold directly into 
three dimensions: 1) neurogenesis, and 2) synaptogenesis. 

  

  

  

  
Figure 2: Neuron growth and differentiation; colors 

represent cell states. 
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3.2.1 Neurogenesis 
In the neurogenesis step, an axiom (initial set) of several cells 
repeatedly divides in three dimensions. A cell has a three-
dimensional position, and an integer type. In an L-brain 
production rule, the predicate is an integer, and the successor is a 
pair of integers. At each division of a parent cell, we search for 
production rules with a predicates the matching parent cell’s type, 
with a conditional that evaluates to true (as detailed below). When 
a matching rule is selected, the parent is removed and two 
daughter cells are placed physically on either side of the parent’s 
position in space; each is assigned a type from one of the two 
integers in the successor. By a process of repeated divisions of all 
cells, a set of initial cells produces a (usually) larger collection of 
cells, each with its position and type. At the top left of Figure 2, 
we have placed 3 “axiom” (initial) neurons along a line parallel to 
the Z axis; the blue color indicates that we initialized them all to 
the same cell type. In the second panel (top right), each cell has 
divided once in the X direction; the colors indicate the cell types 
of these 6 cells. In the third and fourth panels (second row), two 
more divisions in X occur. Three divisions in the Y (up) direction 
follow, and a final division is made in the Z direction. A full 
complement of 384 neurons has been produced, with varying cell 
types, as indicated by color. 

If there is no production rule 
that possesses a matching 
predicate for a cell’s type, or if 
the conditionals for all such 
production rules evaluate to 
false, the cell will not divide. 
This is a normal part of the 
process. As illustrated in 
Figure 3, this is a way to 
produce irregular structures of 
fewer than the maximum 
complement of neurons. On 
the other hand, if more than 
one rule is applicable, one is 
chosen stochastically. 

3.2.1.1 The Multi-stack 
Part of each production rule is a conditional expression, which is a 
sequence of tokens defining a Reverse Polish Notation (RPN) 
arithmetic expression operating on a set of stacks that we call the 
“multi-stack”. Our description of this method, below, may 
initially seem complex and ad hoc. However, we had two design 
goals in mind: 1) the expressions should embody a rich and 
expressive analogy to biological gene regulation, and 2) they 
should behave “sensibly” under mutation and recombination. 

Evaluation of an expression fills the multi-stack with values of 
several types. We use four independent stacks: a stack of floating 
point type; a stack of boolean type; and two separate stacks of 
integer type called the “want-in” and “want-out” stacks. (The 
latter two are used to compute the connections “desired” by axons 
during synaptogenesis; they contain integer neuron types.) 
Importantly, the boolean value on the top of the boolean stack 
after evaluation of the expression determines whether the 
conditional evaluates to true or false. Thus, the contents of the 
expression (in addition to the predicate) control which production 
rules apply. Special tokens introduce the temporal and spatial 
context of the cell into the evaluation of the expression, thus 
influencing development. 

3.2.1.2 Token types 
The token types are divided into several classes (Operator, 
Constant, Program Counter, and Special). As each token in the 
expression is evaluated in sequence, it may affect one or more of 
the stacks, as outlined in Table 1. 
Table 1. Expression tokens and their effects on the multi-stack 
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+, -, *, / 2 1 0 0 0 0 

Enter 1 2 0 0 0 0 

Roll 1 0 0 0 0 0 

Swap 2 2 0 0 0 0 

>, <, >=, <=, == 2 0 0 1 0 0 

or, and, xor 0 0 2 1 0 0 

not 0 0 1 1 0 0 

enter (bool) 0 0 1 2 0 0 

roll (bool) 0 0 1 0 0 0 

Operator 

swap (bool) 0 0 2 2 0 0 

float value 0 1 0 0 0 0 

bool value 0 0 0 1 0 0 

want-in value 0 0 0 0 1 0 
Constant 

want-out value 0 0 0 0 0 1 

ifjump  (jumps to 
next P.C. token) 0 0 1 0 0 0 

nop 0 0 0 0 0 0 
Program 
Counter 

end (stops) 0 0 0 0 0 0 

xpos, ypos, zpos, 

division-axis, 
division-count 

0 1 0 0 0 0 
Special 

is-synaptogenesis 0 0 0 1 0 0 

 

Operator tokens may push or pop values to/from one or more 
stacks. For example, the “+” operator pops two values from the 
floating point stack, and pushes their sum back onto the same 
stack. In contrast, the “or” operator pops two booleans off the 
boolean stack, and pushes their or back onto the same stack. Some 
operators affect more than one stack: for example, the “>” 
operator pops two values from the floating point stack, pushing 
“true” onto the boolean stack if the second is greater than the first, 
and “false” if not. The “Enter” operator pops a value off the 
floating point stack, and pushes this value twice. The “Roll” 
operator simply pops one value from the floating-point stack. The 
“Swap” operator swaps the top two values on the floating-point 
stack. The boolean counterparts “enter”, “roll”, and “swap” apply 
the same operations to the boolean stack. (A detail: when a value 
is popped from an empty stack, the floating point stack returns 

 
Figure 3: Irregular 

structures can result if not 
all cells divide. 
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0.0, the boolean stack returns false, and the want-in and want-out 
stacks return -1.) 

Constant tokens push a floating point, boolean, “want-in”, or 
“want-out” value to the corresponding one of the four stacks. 

There are several tokens that affect the Program Counter. The 
“ifjump” token pops a boolean; if it is true, the Program Counter 
skips tokens until it comes to one of “ifjump”, “nop”, or “end”. 
The “end” token stops evaluation. Of course, “nop” has no direct 
effect on the multi-stack; however, it is a destination point for 
jumps. Thus the positions of Program Counter tokens in an 
expression can dramatically affect the final stack contents. 
Our first design goal for the RPN expressions was that they permit 
the spatial and temporal context of the cell to regulate 
development. The Special tokens directly realize this function. 
The “xpos”, “ypos”, and “zpos” tokens push the X, Y, or Z 
position value of the parent cell onto the floating-point stack. The 
“division-axis” token pushes a floating-point value of 0, 1, or 2 if 
the current cell division is in the X, Y, or Z direction. The 
“division-count” token pushes a floating-point value that 
increments by one at each cell division, starting from zero. 
Finally, the “is-synaptogenesis” pushes a boolean value specifying 
whether development has entered the synaptogenesis phase. 

As an example, if we evaluate the following expression, 

(6, 5, Swap, Enter, t, f, t, 4, 1, >, and, +, 2, ifjump, 3, 3, nop, 3, 
end, not) 

the floating point stack will subsequently contain: (5, 12, 2, 3); the 
boolean stack will contain: (t, f); and the ifjump did occur. The 
want-in and want-out stacks are not involved. 

Our second design goal was for the expressions to not be “brittle” 
under mutation and recombination. We mutate the expressions by 
inserting, deleting, and replacing tokens. They may also be 
recombined sensibly (e.g., with crossover at Program Counter 
tokens), although the experiments shown here do not include sex. 

3.2.2 Synaptogenesis 
After neurogenesis is complete, the process of synaptogenesis, or 
the formation of neural connections, proceeds in three steps. 

3.2.2.1 Placement of Input and Output Neurons 
In the first phase of synaptogenesis, we place a fixed set of Input 
and Output neurons into the neural field. The 18 red spheres 
shown in Figure 4 are the Output neurons actuating the spider’s 
18 DOF. The neurons have abbreviated labels, as follows: the 3 
right legs (from front to back on the body) are named R0, R1, R2; 
the three left legs (front to back) are L0, L1, L2. Each leg has two 
joints j0, and j1, corresponding to the upper and lower leg 
segments. Joint j0 has two moveable axes a0, a1 whereas joint j1 
has only a0. For example, the actuator to move the upper segment 
of the front right leg up-and-down is enervated by R0j0a0. 

The Input neurons are shown in green. The robot has nine inputs: 
velX, velY, and velZ are the current X, Y, and Z velocities of the 
spider’s “head” in the world coordinates. Input xFront indicates 
the dot product of a vector pointing out the “front” of the spider 
with the world X axis (i.e., it is a compass that reads +1 when the 
spider is facing North (positive world X), and -1 for South.) Input 
zFront indicates the dot product of a vector pointing out the front 
of the spider with the world Z axis. (It reads +1 when the robot 
faces world East, and -1 for West.) Input yUp indicates the dot 

product of the spider’s “up” with the world Y axis (+1 for 
upright). The rates of change per time step of the latter three 
inputs are provided as inputs in xFrontVel, zFrontVel, and yUpVel 
respectively. 

All neurons of Input and Output class (and all other neurons) 
produce output values in the range [-1, 1]. Suitable scaling is 
applied to the values of angles, etc. relating to the robot body. 

3.2.2.2 Assignment of Neuron Classes 
After the Input and Output neurons are in place, we return to the 
set of cells produced in the neurogenesis phase; call these cells the 
“protoneurons”. We perform one more application of the 
production rules to each protoneuron. (As developmental cues at 
this time, the token “is-synaptogenesis” returns “true”; “division-
axis” and “division-count” return -1.) For each protoneuron, if a 
production applies, then a single neuron is generated at the 
protoneuron’s position. The type of the neuron is set to the first of 
the pair of successor values (and the second is ignored). In 
addition to its integer type, the neuron is assigned one of the 
following classes: Sigmoid, Delay, Constant, or Oscillating. 

 
Figure 4: Placement of Input (green) and Output (red) 

Neurons.  
Sigmoid neurons are familiar from the neural network literature: 
they sum their inputs plus a “bias” value, and apply a sigmoid 
normalization function to keep output in the range [-1, 1]. When a 
sigmoid neuron is produced, its bias and a (which controls the 
steepness of the sigmoid curve) parameters are required; we will 
obtain these (as described below) from the multi-stack. In the 
experiments shown here, all Sigmoid neurons have two inputs 
available for connection. 

Constant neurons produce a constant output value; when 
initialized they require that value. They have no inputs. 

Delay neurons take their input and buffer it for delay-length time 
steps in a FIFO queue, then output it. The queue is initially filled 
with zeroes. Delay neurons require a delay-length parameter. 
They have one input. 
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Oscillating neurons oscillate sinusoidally between -1 and 1 over a 
period of period time steps; they require this parameter. They 
have no inputs. 

All the required values for each neuron type above are derived 
from the contents of the multi-stack after the last evaluation (i.e., 
when the final neuron type was produced from the protoneuron). 
Sigmoid neurons obtain their a and bias parameters from the 
floating point stack; these are normalized to the range [-1,1] for 
the bias, and (0, 1] for a. Constant neurons obtain their value 
normalized to the range [-1, 1]. Oscillating neurons obtain their 
period value by popping a sequence of values off the boolean 
stack, and using these booleans to select one from the following 
set of possible period values: {90, 60, 30, 20}. (Units are in 
simulation time steps.) Delay neurons are provided with a delay-
length in a similar way from the set {5, 10, 20, 40}. 

In the experiments described here, we included three neuron types 
of class Delay, three types of class Sigmoid, three types of class 
Oscillating, and none of class Constant. The class of a neuron 
determines its behavior (e.g., an Oscillating neuron oscillates) in 
the network, as well as the parameters it requires), whereas the 
type of a neuron is used to determine which axons seek to connect 
to that neuron. Each of the nine Input neurons receives a unique 
type. The 18 Output neurons each receive one of three types 
unique to their joint and axis of control (i.e., j0a0, j0a1, j1a0 each 
receive a unique type; see discussion of Figure 4). Thus, axons 
connecting to Output neurons must “seek” them (see below) both 
by their type, and by their position in the neural field. 

3.2.2.3 Axon Searching 
With all neurons in place, and having assigned the neuron types 
(and classes), we start to form synaptic connections. Consider a 
focal neuron. It produces a single axon from its output. That axon 
investigates each input of all other neurons that are downstream 
(i.e., toward the Output neurons; the networks are feed-forward) 
within a certain spatial neighborhood, to see if they are suitable 
for connection, in the following sense. We turn again to each 
protoneuron’s multi-stack, which is queried for a set of “want-in” 
values to be assigned to each of a given neuron’s inputs, and a 
single “want-out” value to be assigned to a given neuron’s single 
output (all neuron classes have a single output). As the axons 
investigate the inputs of the downstream neighbors, we compute 
what we call the “happy factor” of each potential synaptic 
connection by adding 1 if the “want-out” of the focal neuron 
matches the type of the downstream neuron, and adding 1 if the 
“want-in” of the particular input of the downstream neuron 
matches the focal neuron’s type. All axons investigating a 
particular input of a downstream neuron compete by this metric, 
and the best makes a final synaptic connection (ties are broken by 
shortest inter-neuron distance). 

3.2.2.4 Two unevolved L-brain examples 
Figure 5 shows renderings of two example L-brains (generated 
neural networks). A colored sphere indicates the position in space 
of each neuron. Input neurons are colored red, Output neurons 
green, Delay neurons light blue, Sigmoid neurons purple, and 
Oscillating neurons yellow. (The specific type of a neuron within 
its class is not rendered.) The size of each sphere indicates the 
current output value of the neuron: the largest spheres in the 
renderings indicate the highest possible output value (i.e, a value 
of 1), and the smallest spheres (still of small positive radius) 
indicate the lowest possible output value (i.e., a value of -1). 

Lines indicate the synaptic connections, with the line width 
indicating the absolute value of the connection weight. Black lines 
indicate positive weights and red lines indicate negative weights. 

  
Figure 5: Two unevolved (randomly initiated) L-brains 

For each of the two panels, we randomly generated a set of 
production rules (comprising one genotype), including random 
expressions, and then used it to produce an L-brain. This process 
is not necessarily deterministic if there are multiple matching 
productions at any point; thus each panel of the figure shows one 
possible phenotype for its genotype. The L-brain at left did 
produce robot movement: two Oscillating (yellow) neurons can be 
seen directly connected to several Outputs (red). In the L-brain at 
right, sequences of neurons including Sigmoid (purple) and Delay 
(light blue) neurons cascade from the Inputs (green); if we 
artificially introduce fluctuating signals onto the Inputs, they echo 
downstream through the Sigmoid and Delay neurons. Neither of 
these L-brains produces a proper gait. 

4. EVOLUTIONARY MODEL 
4.1 Mutation 
The genotype of an individual is a set of production rules. We 
initialized all the individuals in the experiments below with 30 
random production rules; the conditional expression of each 
production initially contained 40 random tokens. 

Mutation is applied to an individual by considering each 
production rule in turn, and altering it with probability µ = 0.05 
(per rule per individual per generation). A production may be 
altered by changing its predicate (an integer) or one of its two 
successors (both integers), or by changing its conditional 
expression. If the expression is to be altered, tokens may be either: 
1) mutated (the token is varied within its token class, e.g., an 
Operator token is replaced by a new random Operator token), 2) 
replaced (with a new random token of any class – a more drastic 
change than a token mutation), 3) added (a new random token is 
inserted in the expression), 4) deleted, or 5) two tokens may be 
swapped. It is also possible to add, delete, or clone production 
rules, but we did not do so in the experiments shown here. 

4.2 Population structure 
We conducted our evolutionary runs using metapopulations (sets 
of local populations, or “demes”, connected by migration of 
individuals). We populated each of 16 demes with 50 individuals, 
with migration rate mig = 0.01. We use a metapopulation model 
because our previous experience [12] suggests that, if the 
migration rate is low enough, population subdivision protects rare, 
potentially evolvable genotypes, thereby increasing the rate of 
adaptation. In this way, a subdivided population effectively 
exploits a large population size better than a panmictic population. 
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4.3 Advancing one generation 
A generation begins with a set of individuals in each deme. An L-
brain phenotype is generated from the genotype of each 
individual. All 50 phenotypes in a deme are placed together in a 
physical simulation, randomly distributed in position and 
orientation in a square area on a large plane, as shown in Figure 6. 

Each physical (simulated) 
robot body is enervated by its 
L-brain (neural network). The 
simulation is run for a certain 
time (2000 time steps in the 
experiments here; at 60 fps this 
is 33 seconds in simulation 
world time), and each 
individual is scored on its 
performance at a task that is 
fixed for that experiment 
(tasks described below). All 
individuals in a deme 
reproduce competitively, 
proportional to their scores, 
asexually producing 50 
offspring individuals for the 
next generation. (Sexual 

recombination between sets of production rules is possible, but we 
did not apply it in the experiments described here.) Mutations are 
applied. When all demes have been updated, migration among the 
demes occurs, and a generation is completed. 

5. RESULTS 
5.1 Scoring 
In the experiments below, we employ two scoring functions: one 
called “Go Far” which rewards the individuals for spending time 
far from their origin point; and another called “Go North” that 
rewards individuals for spending time at high absolute value of Z, 
and especially at positive X (“North”) in world coordinates. 

  

Figure 7: The “Go Far” (left) and “Go North” (right) per-
generation scoring functions. 

Figure 7 plots the “Go Far” and “Go North” per-generation 
scoring functions, which are Y = sqrt(X2 + Z2), and Y = X + 0.5 * 
sqrt(Z2), respectively. The Y value corresponding to an 
individual’s X-Z position is accumulated at each generation 
(starting from an initial score of zero) to produce its final score. 

5.2  The “Go Far” task: acquired galloping 
At the beginning of an experiment, most of the randomly 
initialized spiders stand passively with no motion. Some 

rhythmically tap a foot. Others may writhe disturbingly, or even 
flip themselves over. (See online video here [13].) 

 
Figure 8: Mean pop. score on “Go Far”, ten replicate runs. 

However, adaptations soon arise in one deme or another, evolve, 
and spread to other demes. Figure 8 shows the increase in 
population mean score in ten independent replicate runs (16 
demes of 50 individuals each) as the spiders begin to wiggle 
purposefully, and, after 1000 or so generations, to gallop. 

 
Figure 9:  Evolution produces the ability to gallop. 

Figure 9 shows a rendering of the physical simulation, with the 
camera placed in the path of some of the galloping spiders. (See 
online video here [13].) There were a variety of galloping gaits 
produced in the replicate runs; however, within a run, the best 
spiders at a given moment tend to be genetically related, so their 
gaits are often similar. In the figure, the “front” left and right legs 
(L0 and R0) are colored white. The closest spider is galloping 
toward the camera but “backward and sideways”. This is 
unsurprising, since the score does not require “forward” motion. 

 
Figure 6: Fifty spiders are 

initially distributed 
randomly in a small square 

area on a large plane. 
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Figure 10: An evolved L-brain that produces a galloping gait. 

Figure 10 shows four views of one of the evolved galloping L-
brains. In the top left panel, we look up the X axis from the 
Outputs (red) to the Inputs (green); some regular spatial patterning 
of Oscillating (yellow), Sigmoid (purple), and Delay (light blue) 
neurons is apparent. In the top right panel we zoom in closer to 
the red Outputs; the green Inputs can be seen in the distance. 

The two snapshots at the bottom left and right of Figure 10 are 
taken at different points in time. At bottom left, the yellow 
Oscillating neurons are large (indicating high output value); at 
bottom right, they are small (indicating low output value). These 
were oscillating at a period of about 1 second [13], producing 
downstream oscillating changes in the network, and ultimately in 
the outputs, to produce the galloping gait in the spider robot [13]. 

5.3 The “Go North” task: acquired steering 
by compass 
We noticed that in many of the good solutions to the “Go Far” 
task, the Input neurons were unconnected. In fact, we could find 
no evolved “Go Far” brain in which the inputs had any apparent 
effect on the operation of the network; physically shaking the 
robots (which changes their sensor input values) produced no 
apparent change in the outputs. A fixed gait driven by Oscillating 
neurons, without influence by the inputs, was sufficient to succeed 
at the “Go Far” task. Thus, we were curious if the L-brains could 
be evolved to integrate their sensor inputs. 

The “Go North” per-generation fitness function (right side of 
Figure 7) rewards robots for spending time at high absolute values 
of Z, and high positive values of X. Translation in X receives 
double the reward as translation in Z, per unit distance. Here, high 
fitness requires consultation of the input sensors. 

Figure 11 shows the increase in population mean score in ten 
independent replicate runs. The problem appears to be harder than 
“Go Far”, but many replicates still find an excellent solution. 

 
Figure 11: Mean pop. score on “Go North”, ten replicates. 

In Figure 12, we take one successful population of spiders and 
compare their initial distribution (left panel) on the plane with 
their distribution after they have been enervated for ~50 seconds 
(right panel). They have generally run North (“up” in the image). 
When the evolved robots are first placed on the plane, they begin 
to turn themselves to the North; as they face nearly northward, an 
oscillating galloping motion grows. If the experimenter disturbs a 
robot by turning its heading away from North, it again goes into 
turning mode, then begins to gallop again. (See video [13].) 

Figure 12: A successful run of “Go North”.  
Remarkably, one metapop-
ulation found a “Go North” 
solution with a galloping gait 
that used no Oscillating 
neurons. One of the L-brains 
with this behavior is shown in 
Figure 13. It produces this 
behavior by involving the 
physical simulation in a 
feedback loop. The loop runs 
from the velY Input, through a 
chain of Delay neurons up the 
middle of the figure, connecting 
in turn to the actuators for the 
up-down axis of two of the legs 
(L0 and L1). When these two 
legs drive down (up), the front of the robot lifts (drops), raising 
(lowering) velY. Thus an oscillating signal propagates around the 
loop [13], making the robot gallop. 

  

 
Figure 13: A successful "Go 

North" L-Brain with no 
Oscillating neurons. 
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6. DISCUSSION 
A major long-term goal of Evolutionary Computing is to evolve 
artifacts that rival the complexity of living things. Living things 
became complex by accretive addition of mechanisms over 
macroevolutionary timescales. Therefore we wish to understand 
how to drive the accumulation of complexity in artificial 
evolution. Two factors will be required: 1) the developmental 
process must admit the possibility of accretive addition of 
mechanisms over macroevolutionary time periods; and 2) we must 
understand how to encourage (i.e., select for, directly or 
indirectly) such increase. 
Gould [14] (p. 282) argues that selection for complexity was not 
necessary for living things to become more complex over time. 
Rather, life necessarily began at the “left wall” of minimal 
complexity, and “every once in a while, a more complex creature 
evolves and extends the range of life’s diversity in the only 
available direction.” (p. 214) Thus, if our artificial system first 
admits the possibility of the accretion of complexity, we can 
expect some increase in complexity due to drift, in the absence of 
selection for it. However, we may greatly accelerate the process 
by selecting for complexity, directly or indirectly. Moreover, 
when we practice artificial evolution, we need not start at the “left 
wall”, i.e., with the simplest system possible. Rather, we can “take 
a short cut” by borrowing mechanisms (e.g., sexual reproduction, 
geometrically-oriented development) from living things, rather 
than evolving them entirely from scratch, if we believe (or, better 
yet, if we can demonstrate) that they aid the evolvability of 
complexity. 
How do we “select for complexity”? When species are in 
competition, there will be an indirect pressure to invade new 
niches, where competitor species cannot follow due to lack of 
gene flow carrying the innovation that allows invasion of a new 
niche. (This force is present but weaker in intraspecies 
competition.) We hypothesize that, in a sufficiently complex 
environment, organisms with the ability to accrete complexity 
(which is a type of evolvability) will sometimes be able to invade 
niches that require unprecedented organismal complexity to 
exploit, and are thus currently empty. For example, when all life 
was unicellular, the complex physical world nonetheless admitted 
empty niches that could be – and eventually were – filled by 
multicellular organisms. Thus interspecies competition, which 
implies an indirect selection to diversify, will in a sufficiently 
complex environment also select for the accretion of complexity. 
This first introductory paper describes a new platform designed to 
explore the issues posed above. The L-brain system is intended to 
“take a short cut” by borrowing mechanisms from biology that 
will permit further accretion of complexity. The choice of the 
pseudo-physical robotic control problem was also intentional: it 
will allow us to provide a sequence of tasks (niches) of increasing 
difficulty, including both difficult control tasks, as well as 
competitive and social behaviors. It is our intention to use the 
complete platform in the future to investigate by “knock out” 
experiments what components of the L-brain system are most 
important for the acquisition of complexity. 
 
 
 
 
 

 
There are a number of online videos related to this paper [13]. We 
plan to release our source code in the future [15]. 
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